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Roadmap

Things we are going to cover:

• Practical introduction to GNNs
• Message passing
• Anisotropic GNNs (attention, edge attributes)
• Spectral graph theory and GNNs
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From CNNs to GNNs
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• The receptive field of a
CNN reflects the
underlying grid structure.

• The CNN has an inductive
bias on how to process
the individual
pixels/timesteps/nodes.
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From CNNs to GNNs

• Drop assumptions about underlying structure: it is now an
input of the problem.

• The only thing we know: the representation of a node
depends on its neighbors.
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Discrete convolution

1 2 3 4 5 6 1 0 1 4 6 8 10* =

Discrete convolution:

(f ⋆ g)[n] =
M∑

m=−M
f[n−m]g[m]

Problems:
• Variable degree of nodes
• Orientation
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Notation recap

• Graph: nodes connected by edges;
• X = [x1, . . . , xN], xi ∈ RF, node attributes or “graph signal”;
• eij ∈ RS, edge attribute for edge i→ j;
• A, N× N adjacency matrix;
• D = diag([d1, . . . ,dN]), diagonal degree matrix;
• L = D− A, Laplacian;
• Reference operator R: rij ̸= 0 if ∃i→ j
Note: for us, R is symmetric.
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A quick recipe for a local learnable filter

Applying R to node attributes X is a local action:

(RX)i =
N∑
j=1

rij · xj =
∑
j∈N (i)

rij · xj

Instead of having a different weight for each neighbor, we
share weights among nodes in the same neighborhood:

X′ = RXΘ

where Θ ∈ RF×F′ .
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Powers of R

Let’s consider the effect of applying R2 to X:

(RRX)i =
∑
j∈N (i)

rij(RX)j =
∑
j∈N (i)

∑
k∈N (j)

rij · rjk · xk

Key idea: by applying RK we aggregate information
from the K-th order neighborhood of a node.
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Polynomials of R

To cover all neighbors of order 0 to K, we can just
take a polynomial with weights Θ(k):

X′ =
K∑

k=0

RkXΘ(k)

Θ(0)

Θ(1)

Θ(2)
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Chebyshev polynomials [1]

A recursive definition using Chebyshev
polynomials:

T(0) = I
T(1) = L̃
T(k) = 2 · L̃ · T(k−1) − T(k−2)

Where L̃ =
2Ln
λmax

− I and Ln = I− D−1/2AD−1/2︸ ︷︷ ︸
An

Layer: X′ =
K∑

k=0
T(k)XΘ(k)
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[1] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
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Graph convolutional networks [2]

Polynomial of order K→ K layers of order 1;

Three simplifications:

1. λmax = 2→ L̃ =
2Ln
λmax

− I = −D−1/2AD−1/2 = −An

2. K = 1→ X′ = XΘ(0) − AnXΘ(1)

3. Θ = Θ(0) = −Θ(1)

Layer: X′ = (I+ An︸ ︷︷ ︸
Ã

)XΘ = ÃXΘ

For stability: (I+ An) → D−1/2(I+ A)D−1/2
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ã12 ã13
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[2] T. N. Kipf et al., “Semi-supervised classification with graph convolutional networks,” 2016.
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Message passing



Message passing neural networks [3]
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[3] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.
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Message passing neural networks [3]

A general scheme for message-passing networks:

x′i = γ
(
xi,□j∈N (i) ϕ

(
xi, xj, eji

))
,

• ϕ: message function, depends on xi, xj and possibly the
edge attribute eji;

• □j∈N (i): aggregation function (sum, average, max, or
something else...);

• γ: update function, final transformation to obtain new
attributes after aggregating messages.
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[3] J. Gilmer et al., “Neural message passing for quantum chemistry,” 2017.
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Anisotropic GNNs



Graph attention networks [4]

1. Messages: hi = Θfxi with Θf ∈ RF′×F.
2. Attention between neighbors:

2.1 Score: eij = σ
(
θ⊤a [hi ∥ hj]

)
, with θa ∈ R2F′ .

2.2 Normalize with Softmax: aij =
exp (eij)∑

k∈N (i)
exp (eik)

3. Aggregate using the attention coefficients:

x′i =
∑
j∈N (i)

aijhj

h1
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a21 a31

a41

∥ indicates concatenation

[4] P. Velickovic et al., “Graph attention networks,” 2017.
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Edge-conditioned convolution [5]

Key idea: incorporate edge attributes into the
messages.

Use a MLP ϕ : RS → RFF′ to generate weights:

Θ(ji) = reshape(ϕ(eji))

Use the edge-dependent weights to compute
messages:

x′i = Θ(i)xi +
∑
j∈N (i)

Θ(ji)xj + b
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[5] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.
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So which GNN do I use?

GCNConv
Kipf & Welling

ChebConv
Defferrard et al.

GraphSageConv
Hamilton et al.

ARMAConv
Bianchi et al.

ECCConv
Simonovsky & Komodakis

GATConv
Velickovic et al.

GCSConv
Bianchi et al.

APPNPConv
Klicpera et al.

GINConv
Xu et al.

DiffusionConv
Li et al.

GatedGraphConv
Li et al.

AGNNConv
Thekumparampil et al.

TAGConv
Du et al.

CrystalConv
Xie & Grossman

EdgeConv
Wang et al.

MessagePassing
Gilmer et al.
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A good recipe [6]

Message passing scheme:
• Message: mji = PReLU

(
BatchNorm

(
Θxj + b

))
• Aggregate: magg =

∑
j∈N (i)

mji

• Update: x′ = x || magg;
Architecture:
• Pre- and post-process node features using 2-layer MLPs;
• 4-6 message passing steps;

2-layer MLP

Message Passing

Message Passing

Message Passing

Message Passing

2-layer MLP

[6] J. You et al., “Design space for graph neural networks,” 2020.
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How do we use this?

Node-level learning.
(e.g., social networks)

Graph-level learning.
(e.g., molecules)

17



Graph convolution



Discrete convolution

1 2 3 4 5 6 1 0 1 4 6 8 10* =
Recall: CNNs compute a discrete
convolution

(f ⋆ g)[n] =
M∑

m=−M
f[n−m]g[m] (1)

18



Convolution theorem

Given two functions f and g, their convolution f ⋆ g can be expressed as:

f ⋆ g = F−1 {F {f} · F {g}} (2)

Where F is the Fourier transform and F−1 its inverse.

Can we use this major property?
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What is the Fourier transform?

Key intuition – we are representing a function in a different basis.

F{f}[k] = f̂[k] =
N−1∑
n=0

f[n]e−i 2πN kn F−1{̂f}[n] = f[n] = 1
N

N−1∑
k=0

f̂[k]ei 2πN kn

= + +
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From FT to GFT

The eigenvectors of the Laplacian for a path graph
can be obtained analytically:

uk[n] =


1, for k = 0
eiπ(k+1)n/N, for odd k, k < N− 1
e−iπkn/N, for even k, k > 0
cos(πn), for odd k, k = N− 1

Looks familiar?
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5 10 15 20

u 4
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From FT to GFT

Convolution

Fourier
Transform

Path Graph

Laplacian

Fourier
Eigenbasis

• Drop the “grid” assumption
• Replace e−i 2πN kn with generic uk[n]:

FG {f} [k] =
N−1∑
n=0

f[n]uk[n]

• GFT: FG{f} = f̂ = U⊤f;
• IGFT: F−1

G {̂f} = f = Uf̂
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Graph convolution

Recall:

• Convolution theorem: f ⋆ g = F−1 {F {f} · F {g}}

• Spectral theorem: L = UΛU⊤ =
N−1∑
i=0

λiuiu⊤i

Graph signals:
f,g

GFT:
U⊤f,U⊤g

Multiply: 1
U⊤f ⊙ U⊤g

IGFT:
U
(
U⊤f⊙ U⊤g

)

Graph filter: U
(
U⊤f⊙ U⊤g

)
= U · diag(U⊤g)︸ ︷︷ ︸

g(Λ)

·U⊤f = U · g(Λ) · U⊤︸ ︷︷ ︸
g(L)

f = g(L)f

1⊙ indicates element-wise multiplication
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Spectral GCNs



Spectral GCNs

A first idea [7]: transformation of each individual
eigenvalue is learned with a free parameter θi.

Problems:
• O(N) parameters;
• not localized in node space (the only thing
that we want);

• U · g(Λ) · U⊤ costs O(N2);

gθ(Λ) =


θ0

θ1
. . .

θN−2
θN−1



[7] J. Bruna et al., “Spectral networks and locally connected networks on graphs,” 2013.
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Spectral GCNs

Better idea [7]:
• Localized in node domain↔ smooth in
spectral domain;

• Learn only a few parameters θi;
• Interpolate the other eigenvalues using
a smooth cubic spline;

Localized and O(1) parameters, but
multiplying by U twice is still expensive.
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[7] J. Bruna et al., “Spectral networks and locally connected networks on graphs,” 2013.

25



Chebyshev polynomials [1]

The same recursion is used to filter eigenvalues:

T(0) = I
T(1) = Λ̃

T(k) = 2 · Λ̃ · T(k−1) − T(k−2)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

T(n
) (x

)

T(1)

T(2)

T(3)

T(4)

T(5)

T(6)

[1] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
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GNN libraries

27



References i

[1] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations (ICLR), 2016.

[3] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.

[4] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[5] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in
convolutional neural networks on graphs,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

28



References ii

[6] J. You, R. Ying, and J. Leskovec, “Design space for graph neural networks,” arXiv
preprint arXiv:2011.08843, 2020.

[7] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

29



Pooling in Graph Neural Networks
Graph Deep Learning 2022

Daniele Grattarola
February 28, 2022



Pooling in CNNs
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Roadmap

Things we are going to cover:

• A “message passing” for pooling
• Methods
• Global pooling
• Open questions

Source: “Understanding pooling in graph neural networks”, Grattarola et al., 2021
https://arxiv.org/abs/2110.05292
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Notation

• Graph: nodes connected by edges;
• A, adjacency matrix of shape N× N;
• D = diag([d1, . . . ,dN]), diagonal degree matrix;
• L = D− A, Laplacian matrix;
• X = [x1, . . . , xN]⊤, xi ∈ RF, node attributes or “graph signal”;
• eij ∈ RS, edge attribute for edge i→ j;
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Graph pooling by example

Strategy 1: aggregate same attributes (Candy Crush pooling). Strategy 2: aggregate
cliques. Strategy 3: keep only some types/colors.
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Three main questions [1]

1. How to identify groups of related nodes?
2. How to get new node attributes from the groups?
3. How to connect the new nodes?

[1] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” 2021 (In preparation).
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Step 1: Select



Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }
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Selecting nodes

The selection stage computes K supernodes:

SEL : G 7→ S = {S1, . . . ,SK}.

Each supernode is a set of nodes associated
with a score:

Sk = {(xi, si) | si ∈ R>0} ,

{ } { } { }

S = ∈ RK×N
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Spectral clustering [3]

The low-frequency eigenvectors naturally
cluster the nodes.

5 10 15 20

u 1

Idea: run k-means clustering (or similar)
using the first few eigenvectors.

[2] J. Shi et al., “Normalized cuts and image segmentation,” 2000.
[3] U. Von Luxburg, “A tutorial on spectral clustering,” 2007.
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Node decimation [5]

Alternative: use the highest-frequency
eigenvector to do something similar to a
regular subsampling.

5 10 15 20

u 1
9

[4] L. Palagi et al., “Computational approaches to max-cut,” 2012.
[5] F. M. Bianchi et al., Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling, 2019.
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Some problems

Problems with spectral methods:
• Computing eigenvectors is expensive
(O(N3));

• They do not consider attributes.
But we get the general idea...
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Step 2: Reduce



Reducing supernodes

The reduction stage aggregates the
supernodes in a permutation-invariant way:

RED : G,Sk 7→ x′k

Typical approach is to take a weighted sum
(weights given by the scores in the
supernodes):

X′ = SX (∈ RK×F)

{ } { } { }
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Step 3: Connect



Connecting supernodes

The connection function decides whether
two supernodes are connected (and, in case,
computes the associated attributes):

CON : G,Sk,Sl 7→ e′kl

Typical approach is again to take a weighted
sum of edges between two supernodes:

A′ = SAS⊤ (∈ RK×K)

{ } { } { }

a′12 = 2 a′23 = 1
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Select, Reduce, Connect [1]

Putting everything together:

S = {Sk}k=1:K = SEL(G);︸ ︷︷ ︸
Selection

X ′ = {RED(G,Sk)}k=1:K ;︸ ︷︷ ︸
Reduction

E ′ = {CON(G,Sk,Sl)}k,l=1:K ;︸ ︷︷ ︸
Connection

2

1

[1] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” 2021 (In preparation).
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Methods



Pooling methods

A few ideas:

1. Graclus [6]: visit nodes randomly, merge pairs that maximize
aij
wi

+
aij
wj
; 1

In [7], they reduce supernodes with element-wise max.
2. Clique Pooling [8]: merge together cliques.
3. LaPool [9]: select “leaders” that have higher local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[6] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[7] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
[8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.
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Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [10]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [11]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [12]: combine Mapper [13] and GCN
[14] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[10] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018.
[11] F. M. Bianchi et al., “Mincut pooling in Graph Neural Networks,” 2019.
[12] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

15



MinCut Pooling [11]

• Select: S⊤ = MLP(X)
• Reduce: X′ = SX
• Connect: A′ = SAS⊤

• MinCut loss: Lc = −
Tr(SAS⊤)
Tr(SDS⊤)

• Orthogonality loss:

Lo =
∥∥∥∥ SS⊤

‖SS⊤‖F
−

IK√
K

∥∥∥∥
F

�

� 
�

�
(�+1)

pool

�
(�)

MP MLP�
(�+1)

MP

MinCutPool

�pool

�
(�+1)

pool

� 
�

[11] F. M. Bianchi et al., “Mincut pooling in Graph Neural Networks,” 2019.
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Top-K methods

Problem: computing S with neural network
is likely to yield a very dense matrix.

Can we learn a sparse selection?
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Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K
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Top-K methods

Different ways of computing the selection indices i:

• Select with a simple linear projection θ ∈ RF [15];
• Select with a GNN [16];
• Train the selection with a supervised objective (needs ground truth for which nodes
to keep) [17].

[15] S. J. Hongyang Gao, “Graph U-Net,” 2019.
[16] J. Lee et al., “Self-Attention Graph Pooling,” 2019.
[17] B. Knyazev et al., “Understanding attention in graph neural networks,” 2019.
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Top-K methods

Reduce: X′ = Xi - Connect: A′ = Ai,i

Problems:
• Top-k selection is non-differentiable (no way of training
ϕ).
Solved by gating (multiplying) the node attributes with
the scores.

• Graph is likely to be disconnected or simply cut off (like
in the image on the right).
Not really solvable...

Original

Top-K
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Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;
• Fixed vs. Adaptive: how many supernodes does the selection compute;
• Trainable vs. Non-trainable: learn to pool from data or not;

21



Global pooling



Global Pooling

In CNNs, after convolution, we usually
flatten out the images to give a vector as
input to a MLP:
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The graph equivalent must be invariant to
permutations of the nodes:
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Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;
• Weighted sum with attention [18];
• Sum and then apply a neural network [19];

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.
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Open questions



Open questions

• Does pooling really work?
• Dense selection + message passing + small graphs is a bad idea [20]
• Which tasks benefit from pooling a priori?
• Problems with inherent hierarchy?

• Can we make a pooling layer that is dense, trainable, and adaptive?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.
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