

Learning Graph Cellular Automata

Daniele Grattarola, Lorenzo Livi, Cesare Alippi Neural Information Processing Systems 2021

(a) Transition rule

(b) Evolution of CA

Cellular automata

Cellular automata

(c) Rule 110 (d) Rule 184

. Gođ . ,

(e) Conway's Game of life

A Graph CA is the generalisation of typical CA:

- Cells arranged in a graph;
- State space is any vector space;
- Transition rule τ as a function of neighbours N(i);

The transition rule has the form:

$$\tau(\mathbf{s}_i): \{\mathbf{s}_i\} \cup \{\mathbf{s}_j, \mathbf{e}_{ji} \mid j \in \mathcal{N}(i)\} \mapsto \mathbf{s}'_i,$$

where \mathbf{e}_{ji} encodes type, distance, direction, or unique ID of neighbour.

Problem: how to design a useful rule?

 Wulff and Hertz [1]: learning 1D and 2D CA using "∑-∏ networks with weight sharing";

^[1] N Wulff et al., "Learning cellular automaton dynamics with neural networks," 1992.

Learning GCA

- Wulff and Hertz [1]: learning 1D and 2D CA using "∑-∏ networks with weight sharing";
- Elmenreich and Fehérvári [2], Nichele, Ose, Risi, et al. [3]: neuroevolution to learn rules with target behaviour;

^[2] W. Elmenreich et al., "Evolving self-organizing cellular automata based on neural network genotypes," 2011.

^[3] S. Nichele et al., "CA-NEAT: evolved compositional pattern producing networks for cellular automata morphogenesis and replication," 2017.

- Wulff and Hertz [1]: learning 1D and 2D CA using "∑-∏ networks with weight sharing";
- Elmenreich and Fehérvári [2], Nichele, Ose, Risi, et al. [3]: neuroevolution to learn rules with target behaviour;
- **Gilpin [4]**: universal CNN architecture for *M*-state 2D CA;

^[4] W. Gilpin, "Cellular automata as convolutional neural networks," 2019.

Learning GCA

- Wulff and Hertz [1]: learning 1D and 2D CA using "∑-∏ networks with weight sharing";
- Elmenreich and Fehérvári [2], Nichele, Ose, Risi, et al. [3]: neuroevolution to learn rules with target behaviour;
- **Gilpin [4]**: universal CNN architecture for *M*-state 2D CA;
- Mordvintsev, Randazzo, Niklasson, et al. [5]: learning to grow a given configuration (inspired by flatworms).

^[5] A. Mordvintsev et al., "Growing neural cellular automata," 2020.

Learning GCA

GCA transition rules are message-passing functions:

$$\mathbf{s}'_{i} = \gamma \left(\mathbf{s}_{i}, \sum_{j \in \mathcal{N}(i)} \phi \left(\mathbf{s}_{i}, \mathbf{s}_{j}, \mathbf{e}_{ji} \right) \right).$$

Graph Neural Cellular Automata: GCA with GNN transition rule.

Extend the results of Gilpin [4] to implement any M-state GCA:

- MLP for one-hot encoding states;
- Message-passing for pattern matching;

^[4] W. Gilpin, "Cellular automata as convolutional neural networks," 2019.

Binary GCA on Voronoi tessellation (equiv. Delaunay triangulation). Simplest extension to GCA.

Outer-totalistic rule only depends on the density ρ_i of alive neighbours:

$$\tau(\mathbf{s}_i) = \begin{cases} \mathbf{s}_i, & \text{if } \rho_i \leq \kappa \\ 1 - \mathbf{s}_i, & \text{if } \rho_i > \kappa. \end{cases}$$

(a) Example transition

GNCA on Voronoi tessellation

Continuous-state GCA with dynamic graph based on the Boids algorithm [6]:

^[6] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," 1987.

Loss goes to 10^{-6} almost immediately, but approximation is not good:

(a) SampEn and CD during training.

GNCA for agent-based modelling

(a) Examples of flocks from the true system and the GNCA.

Goal: design a rule with a desired behaviour (converging to target).

Apply rule for *t* steps starting from **S**.

Compute loss w.r.t. target state \hat{S} .

Use a cache to ensure stable attractor and adequate state space exploration [5].

^[5] A. Mordvintsev et al., "Growing neural cellular automata," 2020.

(a) Logo, GNCA trained with t = 20, example of convergence.

Step

(a) Logo, GNCA trained with t = 20, example of convergence.

(a) Grid, GNCA trained with t = 10, example of periodic behaviour.

(a) Bunny, GNCA trained with t = 20, example of periodic behaviour.

Step

Step

- Predict global properties (e.g. graph classification);
 - Something similar was done by Gori, Monfardini, and Scarselli [7];

^[7] M. Gori et al., "A new model for learning in graph domains," 2005.

- Predict global properties (e.g. graph classification);
 - Something similar was done by Gori, Monfardini, and Scarselli [7];
- Decentralised control (e.g. IoT, autonomous vehicles);

^[7] M. Gori et al., "A new model for learning in graph domains," 2005.

- Predict global properties (e.g. graph classification);
 - Something similar was done by Gori, Monfardini, and Scarselli [7];
- Decentralised control (e.g. IoT, autonomous vehicles);
- Epidemiological networks;

^[7] M. Gori et al., "A new model for learning in graph domains," 2005.

- Predict global properties (e.g. graph classification);
 - Something similar was done by Gori, Monfardini, and Scarselli [7];
- Decentralised control (e.g. IoT, autonomous vehicles);
- Epidemiological networks;
- Modelling biological systems (e.g. neurons).

^[7] M. Gori et al., "A new model for learning in graph domains," 2005.

Learning Graph Cellular Automata

Daniele Grattarola, Lorenzo Livi, Cesare Alippi

github.com/danielegrattarola/GNCA

Summary:

- Learn GCA rules with GNNs;
- Universal architecture for *M*-state GCA;
- Enable design of GCA from high-level specification;
- Solve tasks through emergent computation.

Get in touch: daniele.grattarola@usi.ch

References i

- [1] N Wulff and J. A. Hertz, "Learning cellular automaton dynamics with neural networks," Advances in Neural Information Processing Systems, vol. 5, pp. 631–638, 1992.
- [2] W. Elmenreich and I. Fehérvári, "Evolving self-organizing cellular automata based on neural network genotypes," in *International Workshop on Self-Organizing Systems*, Springer, 2011, pp. 16–25.
- [3] S. Nichele, M. B. Ose, S. Risi, and G. Tufte, "Ca-neat: Evolved compositional pattern producing networks for cellular automata morphogenesis and replication," *IEEE Transactions on Cognitive and Developmental Systems*, vol. 10, no. 3, pp. 687–700, 2017.
- [4] W. Gilpin, "Cellular automata as convolutional neural networks," *Physical Review E*, vol. 100, no. 3, p. 032 402, 2019.

- [5] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin, "Growing neural cellular automata," *Distill*, vol. 5, no. 2, e23, 2020.
- [6] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," in *Proceedings of the 14th annual conference on Computer graphics and interactive techniques*, 1987, pp. 25–34.
- [7] M. Gori, G. Monfardini, and F. Scarselli, "A new model for learning in graph domains," in *Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.*, IEEE, vol. 2, 2005, pp. 729–734.