
Learning Graph Cellular Automata

Daniele Grattarola, Lorenzo Livi, Cesare Alippi
Neural Information Processing Systems 2021



Cellular automata

(a) Transition rule

(b) Evolution of CA
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Graph cellular automata

A Graph CA is the generalisation of typical CA:
• Cells arranged in a graph;
• State space is any vector space;
• Transition rule τ as a function of
neighbours N (i);
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Graph cellular automata

The transition rule has the form:

τ(si) : {si} ∪ {sj, eji | j ∈ N (i)} 7→ s′i ,

where eji encodes type, distance, direction, or unique
ID of neighbour.
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Learning GCA

Problem: how to design a useful rule?
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Learning GCA

• Wulff and Hertz [1]: learning 1D and 2D CA
using “

∑
-
∏
networks with weight sharing”;

• Elmenreich and Fehérvári [2], Nichele, Ose,
Risi, et al. [3]: neuroevolution to learn rules
with target behaviour;

• Gilpin [4]: universal CNN architecture for
M-state 2D CA;

• Mordvintsev, Randazzo, Niklasson, et al. [5]:
learning to grow a given configuration
(inspired by flatworms).

[1] N Wulff et al., “Learning cellular automaton dynamics with neural networks,” 1992.
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Learning GCA

GCA transition rules are message-passing
functions:

s′i = γ

si, ∑
j∈N (i)

ϕ
(
si, sj, eji

) .
si

Pre-process Message passing

s′i

New state

MLP MLP

Graph Neural Cellular Automata: GCA with GNN transition rule.
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Learning GCA

Extend the results of Gilpin [4] to
implement any M-state GCA:
• MLP for one-hot encoding states;
• Message-passing for pattern matching;

si

Pre-process Message passing

s′i

New state

MLP MLP

[4] W. Gilpin, “Cellular automata as convolutional neural networks,” 2019.
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GNCA on Voronoi tessellation

Binary GCA on Voronoi tessellation (equiv. Delaunay triangulation).

Simplest extension to GCA.
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GNCA on Voronoi tessellation

Outer-totalistic rule only depends on the
density ρi of alive neighbours:

τ(si) =
{
si, if ρi ≤ κ

1− si, if ρi > κ.

ρ1 = 0.5

ρ2 = 0.5
ρ3 = 0.66

ρ4 = 0.66
ρ5 = 1

Switched

Switched

Switched

(a) Example transition
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GNCA on Voronoi tessellation
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GNCA for agent-based modelling

Continuous-state GCA with dynamic graph based on the Boids algorithm [6]:

(a) Separation (b) Alignment (c) Cohesion

[6] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” 1987.
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GNCA for agent-based modelling

Loss goes to 10−6 almost
immediately, but approximation is
not good:
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(a) Loss.

Use sample entropy and correlation dimension to
evaluate how good the learned rule is.
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(a) SampEn and CD during training.
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GNCA for agent-based modelling

(a) Examples of flocks from the true system and the GNCA.
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GNCA that converge to a fixed target

Goal: design a rule with a desired behaviour (converging to target).
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GNCA that converge to a fixed target

S GNCA

t ∈ [10, 20]

τ t(S)

Apply rule for t steps starting from S.
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GNCA that converge to a fixed target

S GNCA

t ∈ [10, 20]

τ t(S) Ŝ

BPTT

Compute loss w.r.t. target state Ŝ.
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GNCA that converge to a fixed target

S GNCA

t ∈ [10, 20]

τ t(S) Ŝ

BPTT

Cache

SaveLoad

Use a cache to ensure stable attractor and adequate state space exploration [5].
[5] A. Mordvintsev et al., “Growing neural cellular automata,” 2020.
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GNCA that converge to a fixed target

(a) Logo, GNCA trained with t = 20, example of convergence.
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GNCA that converge to a fixed target

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=18 t=19 t=20

(a) Grid, GNCA trained with t = 10, example of periodic behaviour.
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(a) Bunny, GNCA trained with t = 20, example of periodic behaviour.
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Future research

• Predict global properties (e.g. graph classification);
• Something similar was done by Gori, Monfardini, and Scarselli [7];

• Decentralised control (e.g. IoT, autonomous vehicles);
• Epidemiological networks;
• Modelling biological systems (e.g. neurons).

[7] M. Gori et al., “A new model for learning in graph domains,” 2005.
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Conclusion

Learning Graph Cellular Automata
Daniele Grattarola, Lorenzo Livi, Cesare Alippi

github.com/danielegrattarola/GNCA

Summary:
• Learn GCA rules with GNNs;
• Universal architecture for M-state
GCA;

• Enable design of GCA from
high-level specification;

• Solve tasks through emergent
computation.

Get in touch: daniele.grattarola@usi.ch
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