

Graph Neural Networks

Operators and Architectures

Daniele Grattarola Dissertation defence - December 10, 2021

Advisor: Prof. Alippi Co-advisor: Prof. Livi (U. Manitoba)

Internal committee: Profs. Crestani, Gambardella External committee: Profs. Angelov (Lancaster U.), Panayiotou (U. Cyprus), Sperduti (U. Padova)

Graphs are everywhere

Computer vision

Biology

Neuroscience

Graphs are everywhere

Combinatorial generalisation

Combining known concepts to represent new ones.

^[1] P. W. Battaglia et al., "Relational inductive biases, deep learning, and graph networks," arXiv preprint arXiv:1806.01261, 2018.

Graphs are everywhere

Combinatorial generalisation

Combining known concepts to represent new ones.

^[1] P. W. Battaglia et al., "Relational inductive biases, deep learning, and graph networks," arXiv preprint arXiv:1806.01261, 2018.

From CNNs to GNNs

Convolution

Pooling

From CNNs to GNNs

Research summary

Research summary

Research summary

Operators

Notation

- Graph: nodes connected by edges
- X: node attributes
- E: edge attributes
- A: adjacency matrix
- Structure operator S: $s_{ij} \neq 0 \iff a_{ij} \neq 0$

Adjacency matrix $N \times N$

Edge attributes $N \times N \times D_e$

Convolutional operators

Typical graph convolutional networks compute a polynomial of the structure operator S [2], [3]:

$$\mathsf{X}' = \sum_{k=0}^{K} \mathsf{S}^k \mathsf{X} \Theta^{(k)}$$

with learnable weights $\Theta^{(k)} \in \mathbb{R}^{D_n \times D'_n}$.

^[2] M. Defferrard et al., "Convolutional neural networks on graphs with fast localized spectral filtering," Advances in Neural Information Processing Systems, 2016.

^[3] T. N. Kipf et al., "Semi-Supervised Classification with Graph Convolutional Networks," International Conference on Learning Representations (ICLR), 2017.

Convolution with rational filter:

$$\mathsf{X}' = \left(\mathsf{I} + \sum_{k=1}^{K} q_k \mathsf{S}^k\right)^{-1} \left(\sum_{k=0}^{K-1} p_k \mathsf{S}^k\right) \mathsf{X}$$

^[4] E. Isufi et al., "Autoregressive moving average graph filtering," arXiv preprint arXiv:1602.04436, 2016.

Convolution with rational filter:

$$\mathsf{X}' = \left(\mathsf{I} + \sum_{k=1}^{K} q_k \mathsf{S}^k\right)^{-1} \left(\sum_{k=0}^{K-1} p_k \mathsf{S}^k\right) \mathsf{X}$$

ARMA approximation of a rational filter [4]:

 $\mathsf{X}^{(t+1)} = a\mathsf{S}\mathsf{X}^{(t)} + b\mathsf{X}$

^[4] E. Isufi et al., "Autoregressive moving average graph filtering," arXiv preprint arXiv:1602.04436, 2016.

Approximate recursion with finite number of propagation steps: $X^{(t+1)} = \sigma (SX^{(t)}W + XV)$

^[5] F. M. Bianchi, D. Grattarola, et al., "Graph neural networks with convolutional arma filters," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Table 1: Node classification accuracy.

Method	Cora	Citeseer	Pubmed	PPI
GAT	83.1 ±0.6	70.9 ±0.6	78.5 ±0.3	81.3 ±0.1
GraphSAGE	$73.7{\scriptstyle~\pm 1.8}$	$65.9 {\scriptstyle \pm 0.9}$	$78.5{\scriptstyle~\pm 0.6}$	$70.0{\scriptstyle \pm 0.0}$
GIN	$75.1{\scriptstyle \pm 1.7}$	$63.1{\scriptstyle \pm 2.0}$	$77.1 {\scriptstyle \pm 0.7}$	$78.1 {\scriptstyle \pm 2.6}$
GCN	81.5 ±0.4	70.1 ±0.7	$79.0 \scriptstyle \pm 0.5$	80.8 ±0.1
Chebyshev	$79.5{\scriptstyle~\pm1.2}$	$70.1{\scriptstyle \pm 0.8}$	$74.4{\scriptstyle \pm 1.1}$	86.4 ±0.1
CayleyNet	$81.2{\scriptstyle~\pm 1.2}$	$67.1{\scriptstyle \pm 2.4}$	75.6 ±3.6	$84.9 {\scriptstyle \pm 1.2}$
ARMA	$\textbf{83.4}_{\pm 0.6}$	$\textbf{72.5}_{\pm 0.4}$	$78.9{\scriptstyle~\pm 0.3}$	$90.5 \scriptstyle \pm 0.3$

Table 2: Graph classification accuracy.

Method	Enzymes	Proteins	D&D	MUTAG	BHard
GAT GraphSAGE GIN	51.7 _{±4.3} 60.3 _{±7.1} 45.7 _{±7.7}	72.3 _{±3.1} 70.2 _{±3.9} 71.4 _{±4.5}	70.9 _{±4.0} 73.6 _{±4.1} 71.2 _{±5.4}	87.3±5.3 85.7±4.7 86.3±9.1	30.1±0.7 71.8±1.0 72.1±1.1
GCN Chebyshev CayleyNet ARMA	$\begin{array}{c} 53.0_{\pm 5.3} \\ 57.9_{\pm 2.6} \\ 43.1_{\pm 10.7} \\ \textbf{60.6}_{\pm 7.2} \end{array}$	$\begin{array}{c} 71.0_{\pm 2.7} \\ 72.1_{\pm 3.5} \\ 65.6_{\pm 5.7} \\ \textbf{73.7}_{\pm 3.4} \end{array}$	$\begin{array}{c} 74.7_{\pm 3.8} \\ 73.7_{\pm 3.7} \\ 70.3_{\pm 11.6} \\ \textbf{77.6}_{\pm 2.7} \end{array}$	85.7±6.6 82.6±5.2 87.8±10.0 91.5 ±4.2	$\begin{array}{c} 71.9_{\pm 1.2} \\ 71.3_{\pm 1.2} \\ 70.7_{\pm 2.4} \\ \textbf{74.1}_{\pm 0.5} \end{array}$

Table 3: Graph signal classification accuracy.

GNN layer	MNIST	20news		
GCN	98.48 ± 0.2	65.45 ± 0.2		
Chebyshev	$99.14 \pm \textbf{0.1}$	$68.24 \pm \textbf{0.2}$		
CayleyNet	$99.18 \pm \textbf{0.1}$	$68.84 \pm \textbf{0.3}$		
ARMA	$99.20 \pm 0.1 $	70.02 ± 0.1		

 Table 4: Graph regression mean squared error.

Property	GCN	Chebyshev	CayleyNet	ARMA
mu	0.445±0.007	0.433±0.003	0.442±0.009	0.394±0.005
alpha	$0.141 {\scriptstyle \pm 0.016}$	$0.171 {\scriptstyle \pm 0.008}$	$0.118 {\scriptstyle \pm 0.005}$	0.098±0.005
номо	0.371±0.030	0.391±0.012	0.336±0.007	0.326±0.010
LUMO	0.584±0.051	0.528±0.005	0.679±0.148	0.508±0.011
gap	0.650±0.070	0.565±0.015	0.758±0.106	0.552±0.013
R2	$0.132 {\scriptstyle \pm 0.005}$	0.294±0.022	0.185±0.043	0.119±0.019
ZPVE	$0.349 \scriptstyle \pm 0.022$	0.358±0.001	0.555±0.174	0.338±0.001
U0_atom	0.064±0.003	0.126±0.017	$1.493 \scriptstyle \pm 1.414$	0.053±0.004
Cv	0.192±0.012	0.215±0.010	0.184±0.009	0.163±0.007

Pooling operators

Goal: reduce the size of the graph.

^[6] D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," Under review at IEEE TNNLS, 2021.

 $\label{eq:Goal: reduce the size of the graph.} \\ \ensuremath{\textbf{Why}} :$

- Computational cost
- Invariance to feature location
- Abstraction

^[6] D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," Under review at IEEE TNNLS, 2021.

Goal: reduce the size of the graph. **Why**:

- Computational cost
- Invariance to feature location
- Abstraction

Idea: 3-step process proposed in [6]: *Select, Reduce, Connect* (SRC).

^[6] D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," Under review at IEEE TNNLS, 2021.

Method	Select	Reduce	Connect
DiffPool [7]	$S^{\top} = GNN_1(A,X) \text{ (w/ auxiliary loss)}$	$X'=S\cdotGNN_2(A,X)$	$A'=SAS^\top$
MinCut [8]	$S^{ op} = MLP(X)$ (w/ auxiliary loss)	X'=SX	$A'=SAS^\top$
NMF [9]	Factorise: A = WH \rightarrow S = H	X'=SX	$A'=SAS^\top$
LaPool [10]	$\begin{cases} V = \left\ LX\right\ _{d};\\ i = \{i \mid V_{i} > V_{j}, \forall j \in \mathcal{N}(i)\}\\ S^{\top} = SparseMax\left(\beta \frac{XX_{i}^{\top}}{\left\ X\right\ \left\ X_{i}\right\ }\right) \end{cases}$	X' = SX	$A'=SAS^\top$
Graclus [11]	$\mathcal{S}_k = \left\{ x_i, x_j \mid arg \; max_j \left(rac{A_{ij}}{D_{ii}} + rac{A_{ij}}{D_{jj}} ight) ight\}$	X'=SX	METIS [12]
NDP [13]	$i = \{i \mid u_{max,i} > 0\}$	$X'=X_i$	Kron r. [14]
Top- <i>K</i> [15]	$y = \frac{X_P}{\ P\ }; i = top_{\mathcal{K}}(y)$	$X' = (X \odot \sigma(y))_{i};$	$A'=A_{i,i}$
SAGPool [16]	$y = GNN(A,X); i = \mathrm{top}_{\mathcal{K}}(y)$	$X' = (X \odot \sigma(y))_{i};$	$A'=A_{i,i}$

The **selection** stage computes *K* **supernodes**:

$$\{\bigcirc \bigcirc \bigcirc \} \{\bigcirc \bigcirc \bigcirc \} \{\bigcirc \}$$

$$\mathsf{Sel}: \mathcal{G} \mapsto \mathcal{S} = \{\mathcal{S}_1, \dots, \mathcal{S}_K\},\$$

$$\mathcal{S}_k = \{(\mathsf{x}_i, \mathsf{s}_i) \mid \mathsf{s}_i \in \mathbb{R}_{>0}\}.$$

The **reduction** stage aggregates the supernodes in a **permutation-invariant** way:

$$\mathsf{Red}:\mathcal{G},\mathcal{S}_k\mapsto\mathsf{x}'_k$$

Typical approach: $X' = SX \ (\in \mathbb{R}^{K \times F})$

The **connection** function decides whether two supernodes are connected:

 $\mathsf{Con}:\mathcal{G},\mathcal{S}_k,\mathcal{S}_l\mapsto\mathsf{e}'_{kl}$

Typical approach: $A' = SAS^{\top}$ ($\in \mathbb{R}^{K \times K}$)

• Select: $S^{\top} = MLP(X)$

^[8] F. M. Bianchi, D. Grattarola, et al., "Spectral Clustering with Graph Neural Networks for Graph Pooling," International Conference on Machine Learning, 2020.

Node decimation pooling [13]

- Idea: regular subsampling of the nodes using highest-frequency eigenvector u_{max}.
- Select: $I = \{i \mid u_{\max}[i] > 0\}$
- Reduce: $X' = X_I$
- Connect: Kron reduction [14]

^[14] F. Dorfler et al., "Kron Reduction of Graphs With Applications to Electrical Networks," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 1, 2013.

^[13] F. M. Bianchi, D. Grattarola, et al., "Hierarchical representation learning in graph neural networks with node decimation pooling," IEEE Transactions on Neural Networks and Learning Systems, 2020.

Dataset	WL	Dense	No-pool	Graclus	NDP	DiffPool	Top - <i>K</i>	SAGpool	MinCut
Bench-easy Bench-hard	92.6±0.0 60.0±0.0	29.3±0.3 29.4±0.3	98.5±0.3 67.6±2.8	97.5±0.б 69.0±1.б	97.9±0.5 72.6 ±0.9	98.6±0.4 69.9±1.9	82.4±8.9 42.7±15.2	84.2±2.3 37.7±14.5	99.0±0.0 73.8±1.9
Mutagen.	81.7±1.1	68.4±0.з	78.0±1.3	74.4±1.8	77.8±2.3	77.6±2.7	71.9±3.7	72.4±2.4	79.9±2.1
Proteins	71.2±2.6	68.7±з.з	72.6±4.8	68.6±4.6	73.3±3.7	72.7±3.8	69.6±3.5	70.5±2.6	76.5±2.6
DD	78.6±2.7	70.6±5.2	76.8±1.5	70.5±4.8	72.0±3.1	79.3 ±2.4	69.4±7.8	71.5±4.б	80.8±2.3
COLLAB	74.8±1.3	79.3±1.6	$82.1{\scriptstyle \pm 1.8}$	77.1±2.1	79.1±1.5	81.8±1.4	79.3±1.8	79.2±2.0	83.4±1.7
Reddit-B	68.2±1.7	48.5±2.6	80.3±2.6	$79.2 \pm \textbf{0.4}$	84.3±2.4	86.8±2.1	74.7±4.5	73.9±5.1	$91.4{\scriptstyle \pm 1.5}$

 Table 5: Graph classification accuracy.

MinCut achieves state of the art on many graph classification benchmarks (results from [8]).

^[8] F. M. Bianchi, D. Grattarola, et al., "Spectral Clustering with Graph Neural Networks for Graph Pooling," International Conference on Machine Learning, 2020.

DiffPool	MinCut	NMF	LaPool	ТорК	SAGPool	Graclus	NDP
0.010 ±0.005	0.002 ±0.002	0.000 ± 0.000	0.002 ±0.001	18.86 ±3.923	16.61 ±3.270	$0.109 {\scriptstyle \pm 0.000}$	0.000 ±0.000
0.018 ±0.003	$0.001 {\scriptstyle \pm 0.000}$	0.000 ± 0.000	0.052 ±0.046	132.2 ±4.133	148.5 ±30.10	0.600 ±0.000	0.000 ±0.000
3.901 ±0.275	$0.208 \scriptstyle \pm 0.034 $	0.339 ±0.055	$0.610 {\scriptstyle \pm 0.103}$	15.32 ±з.557	16.10 ± 1.722	0.332 ±0.043	0.373 ±0.070
$0.094 \scriptstyle \pm 0.022 $	0.005 ±0.002	0.020 ± 0.000	$0.002 \scriptstyle \pm 0.000 $	0.096 ±0.028	0.268 ±0.081	$0.009 ~\pm 0.000$	$0.012 {\scriptstyle \pm 0.000}$
0.143 ±0.127	0.535 ±0.200	0.016 ±0.001	OOR	0.229 ±0.023	0.204 ±0.029	$0.102 {\scriptstyle \pm 0.000}$	0.009 ± 0.000
$0.101 {\scriptstyle \pm 0.025}$	$0.313 {\scriptstyle \pm 0.000}$	$0.007 {\scriptstyle \pm 0.000}$	OOR	0.056 ±0.051	$0.060 \pm \textbf{0.044}$	$0.010 {~\pm 0.000}$	0.005 ± 0.000
$0.077 _{\pm 0.041}$	$0.301 {\scriptstyle \pm 0.000}$	$0.001 \pm 0.000 $	OOR	0.055 ±0.012	$0.062 {\scriptstyle \pm 0.033}$	$0.001 \pm 0.000 $	0.001 ± 0.000
	DiffPool 0.010 ±0.005 0.018 ±0.003 3.901 ±0.275 0.094 ±0.022 0.143 ±0.127 0.101 ±0.025 0.077 ±0.041	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DiffPool MinCut NMF 0.010 ±0.005 0.002 ±0.002 0.000 ±0.000 0.018 ±0.003 0.001 ±0.000 0.000 ±0.000 3.901 ±0.275 0.208 ±0.034 0.339 ±0.055 0.094 ±0.022 0.005 ±0.002 0.020 ±0.000 0.143 ±0.127 0.535 ±0.200 0.016 ±0.001 0.101 ±0.025 0.313 ±0.000 0.007 ±0.000	DiffPool MinCut NMF LaPool 0.010 ±0.005 0.002 ±0.002 0.000 ±0.000 0.002 ±0.001 0.018 ±0.003 0.001 ±0.000 0.002 ±0.001 0.052 ±0.046 3.901 ±0.275 0.208 ±0.034 0.339 ±0.055 0.610 ±0.103 0.094 ±0.022 0.005 ±0.002 0.020 ±0.000 0.002 ±0.000 0.143 ±0.127 0.535 ±0.200 0.016 ±0.001 OOR 0.101 ±0.025 0.313 ±0.000 0.007 ±0.000 OOR 0.077 ±0.041 0.301 ±0.000 0.001 ±0.000 OOR	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 6: Reconstruction MSE (scale of 10^{-3}).

NDP works better for geometric data, where regular subsampling is desirable (results from [6]).

^[6] D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," Under review at IEEE TNNLS, 2021.

Pooling operators - Results

NDP works better for geometric data, where regular subsampling is desirable (results from [6]).

^[6] D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," Under review at IEEE TNNLS, 2021.

Architectures

- Non-Euclidean Autoencoders
- Explainable GNNs
- Auto-regressive GNNs

Non-Euclidean Autoencoders

Goal: represent graphs on a non-Euclidean manifold with constant curvature (CCM). **How**: adversarial AE with non-Euclidean prior.

$$\min_{f_{\mathsf{enc}}} \max_{f_{\mathsf{dis}}} \mathbb{E}_{z \sim p(z)} \left[\log f_{\mathsf{dis}}(z) \right] + \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}(\mathsf{x})} \left[\log(1 - (f_{\mathsf{dis}} \circ f_{\mathsf{enc}})(\mathsf{x}) \right].$$

^[17] D. Grattarola et al., "Adversarial autoencoders with constant-curvature latent manifolds," Applied Soft Computing, 2019.

Change detection on CCMs [18]

^[18] D. Grattarola et al., "Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds," IEEE Transactions on Neural Networks and Learning Systems, 2019.

Explainable GNNs

Make GNN explainable by introducing attention in the readout operation:

$$z = Attn-RO(h) = \sum_{j=1}^{N} \alpha_j h_j, \text{ where } \alpha_j = \frac{\exp(h_j \cdot a)}{\sum_{k=1}^{N} \exp(h_k \cdot a)}$$

Explainable GNNs for seizure localization [19]

Idea: use attention scores to identify the brain areas where seizures originate.

^[19] D. Grattarola et al., "Unsupervised seizure localisation with attention-based graph neural networks," Under review at IEEE TBME, 2021.

Seizure localization - Results

Known seizure onset zone: GNN shows strong correlation with clinical diagnosis.

Seizure localization - Results

Unknown seizure onset zone: GNN also shows uncertainty.

Auto-regressive GNNs

Goal: predict the next observation of a graph-valued dynamical system.

^[20] D. Zambon et al., "Autoregressive Models for Sequences of Graphs," International Joint Conference on Neural Networks, 2019.

$$f : \mathbb{R}^{p \times d} \to \mathbb{R}^{d}$$
$$x_{t+1} = f(x_t, x_{t-1}, \dots, x_{t-p+1}) + \epsilon$$
$$\mathbb{E}[\epsilon_i] = 0$$
$$Var[\epsilon_i] = \sigma^2 < \infty$$

Graph AR model

$$f: \mathbb{R}^{p \times d} \to \mathbb{R}^{d}$$
$$x_{t+1} = f(x_t, x_{t-1}, \dots, x_{t-p+1}) + \epsilon$$
$$\mathbb{E}[\epsilon_i] = 0$$
$$Var[\epsilon_i] = \sigma^2 < \infty$$

Graph AR model

$$\phi:\mathfrak{G}^{p}\to\mathfrak{G}$$

Graph AR model

$$f : \mathbb{R}^{p \times d} \to \mathbb{R}^{d}$$
$$x_{t+1} = f(x_t, x_{t-1}, \dots, x_{t-p+1}) + \epsilon$$
$$\mathbb{E}[\epsilon_i] = 0$$
$$Var[\epsilon_i] = \sigma^2 < \infty$$

$$\phi: \mathfrak{G}^p \to \mathfrak{G}$$
 $\mathcal{G}_{t+1} = H(\phi(\mathcal{G}_t, \dots, \mathcal{G}_{t-p+1}), \eta)$

$f : \mathbb{R}^{p \times d} \to \mathbb{R}^{d}$ $x_{t+1} = f(x_t, x_{t-1}, \dots, x_{t-p+1}) + \epsilon$ $\mathbb{E}[\epsilon_i] = 0$ $Var[\epsilon_i] = \sigma^2 < \infty$

$$\phi: \mathfrak{G}^{p} \to \mathfrak{G}$$
$$\mathcal{G}_{t+1} = \boldsymbol{H}(\phi(\mathcal{G}_{t}, \dots, \mathcal{G}_{t-p+1}), \eta)$$
$$\phi(\mathcal{G}_{t}, \dots, \mathcal{G}_{t-p+1}) \in \mathbb{E}_{\eta}^{f}[\boldsymbol{H}(\phi(\mathcal{G}_{t}, \dots, \mathcal{G}_{t-p+1}), \eta)]$$

Graph AR model

Where:

$$\mathbb{E}^{\mathrm{f}}[\mathcal{G}] = \argmin_{\mathcal{G}' \in \mathfrak{G}} \int_{\mathfrak{G}} d\left(\mathcal{G}, \mathcal{G}'\right)^2 \, dQ\left(\mathcal{G}\right)$$

Graph AR model

$$f : \mathbb{R}^{p \times d} \to \mathbb{R}^{d}$$
$$x_{t+1} = f(x_t, x_{t-1}, \dots, x_{t-p+1}) + \epsilon$$
$$\mathbb{E}[\epsilon_i] = 0$$
$$Var[\epsilon_i] = \sigma^2 < \infty$$

$$\begin{split} \phi &: \mathfrak{G}^{p} \to \mathfrak{G} \\ \mathcal{G}_{t+1} &= \boldsymbol{H}(\phi(\mathcal{G}_{t}, \dots, \mathcal{G}_{t-p+1}), \eta) \\ \phi(\mathcal{G}_{t}, \dots, \mathcal{G}_{t-p+1}) \in \mathbb{E}_{\eta}^{\mathrm{f}}[\boldsymbol{H}(\phi(\mathcal{G}_{t}, \dots, \mathcal{G}_{t-p+1}), \eta)] \\ \mathsf{Var}^{\mathrm{f}}[\eta] < \infty \end{split}$$

Where:

$$\mathbb{E}^{\mathrm{f}}[\mathcal{G}] = \arg\min_{\mathcal{G}' \in \mathfrak{G}} \int_{\mathfrak{G}} d\left(\mathcal{G}, \mathcal{G}'\right)^2 dQ\left(\mathcal{G}\right) \qquad \mathsf{Var}^{\mathrm{f}}[\mathcal{G}] := \min_{\mathcal{G}' \in \mathfrak{G}} \int_{\mathfrak{G}} d\left(\mathcal{G}, \mathcal{G}'\right)^2 dQ\left(\mathcal{G}\right)$$

Window of observations up to time t.

Window of observations up to time t.

Graph embedding

GNN block applied in parallel to each graph.

Window of observations up to time t.

Graph embedding

GNN block applied in parallel to each graph.

Predictor

RNN predicts the graph embedding at t + 1.

Window of observations up to time t.

Graph embedding

GNN block applied in parallel to each graph.

Predictor

RNN predicts the graph embedding at t + 1.

Graph decoder

Maps the predicted embedding to the predicted graph.

Auto-regressive GNNs - Results

Figure 4: Distance b/w predicted and true graphs.

Figure 5: Loss v. complexity of the problem.

Spektral

Python library for GNNs:

- TensorFlow/Keras
- 25+ layers for convolution and pooling
- Easy to use, flexible, fast
- Almost 2000 🖈 on github.com

Website: graphneural.network Featured on IEEE Computational Intelligence Magazine [21].

^[21] D. Grattarola et al., "Graph neural networks in Tensorflow and Keras with Spektral," IEEE Computational Intelligence Magazine, 2021.

Conclusions

Summary

References i

- P. W. Battaglia, J. B. Hamrick, V. Bapst, et al., "Relational inductive biases, deep learning, and graph networks," arXiv preprint arXiv:1806.01261, 2018.
- [2] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," *Advances in Neural Information Processing Systems*, pp. 3844–3852, 2016.
- [3] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," *International Conference on Learning Representations (ICLR)*, 2017.
- [4] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, "Autoregressive moving average graph filtering," *arXiv preprint arXiv:1602.04436*, 2016.
- [5] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, "Graph neural networks with convolutional arma filters," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.

References ii

- [6] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, "Understanding pooling in graph neural networks," *Under review at IEEE TNNLS*, 2021.
- [7] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, "Hierarchical graph representation learning with differentiable pooling," *arXiv preprint arXiv:1806.08804*, 2018.
- [8] F. M. Bianchi, D. Grattarola, and C. Alippi, "Spectral clustering with graph neural networks for graph pooling," *International Conference on Machine Learning*, 2020.
- [9] D. Bacciu and L. Di Sotto, "A non-negative factorization approach to node pooling in graph convolutional neural networks," in *Proceedings of the 18th International Conference of the Italian Association for Artificial Intelligence*, AIIA, 2019.
- [10] E. Noutahi, D. Beani, J. Horwood, and P. Tossou, "Towards interpretable sparse graph representation learning with laplacian pooling," *arXiv preprint arXiv:1905.11577*, 2019.

References iii

- [11] I. S. Dhillon, Y. Guan, and B. Kulis, "Weighted graph cuts without eigenvectors a multilevel approach," *IEEE transactions on pattern analysis and machine intelligence*, vol. 29, no. 11, pp. 1944–1957, 2007.
- [12] G. Karypis, "Metis: Unstructured graph partitioning and sparse matrix ordering system," *Technical report*, 1997.
- [13] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, "Hierarchical representation learning in graph neural networks with node decimation pooling," *IEEE Transactions on Neural Networks and Learning Systems*, 2020.
- [14] F. Dorfler and F. Bullo, "Kron reduction of graphs with applications to electrical networks," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 60, no. 1, pp. 150–163, 2013, issn: 1549-8328. doi: 10.1109/TCSI.2012.2215780.
- [15] S. J. Hongyang Gao, "Graph u-net," Submitted to ICLR, 2019.

References iv

- [16] J. Lee, I. Lee, and J. Kang, "Self-attention graph pooling," arXiv preprint arXiv:1904.08082, 2019.
- [17] D. Grattarola, L. Livi, and C. Alippi, "Adversarial autoencoders with constant-curvature latent manifolds," *Applied Soft Computing*, 2019.
- [18] D. Grattarola, D. Zambon, C. Alippi, and L. Livi, "Change detection in graph streams by learning graph embeddings on constant-curvature manifolds," *IEEE Transactions on Neural Networks and Learning Systems*, 2019.
- [19] D. Grattarola, L. Livi, C. Alippi, R. Wennberg, and T. Valiante, "Unsupervised seizure localisation with attention-based graph neural networks," *Under review at IEEE TBME*, 2021.
- [20] D. Zambon, D. Grattarola, L. Livi, and C. Alippi, "Autoregressive models for sequences of graphs," *International Joint Conference on Neural Networks*, 2019.

References v

- [21] D. Grattarola and C. Alippi, "Graph neural networks in tensorflow and keras with spektral," *IEEE Computational Intelligence Magazine*, 2021.
- [22] A. Sperduti and A. Starita, "Supervised neural networks for the classification of structures," *IEEE Transactions on Neural Networks*, vol. 8, no. 3, pp. 714–735, 1997.
- [23] M. Gori, G. Monfardini, and F. Scarselli, "A new model for learning in graph domains," in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., IEEE, vol. 2, 2005, pp. 729–734.
- [24] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network model," *IEEE Transactions on Neural Networks*, vol. 20, no. 1, pp. 61–80, 2009.
- [25] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, "Spectral networks and locally connected networks on graphs," arXiv preprint arXiv:1312.6203, 2013.

References vi

- [26] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, "Geometric deep learning: Going beyond euclidean data," *IEEE Signal Processing Magazine*, vol. 34, no. 4, pp. 18–42, 2017.
- [27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," arXiv preprint arXiv:1704.01212, 2017.
- [28] M. Simonovsky and N. Komodakis, "Dynamic edgeconditioned filters in convolutional neural networks on graphs," in *Proc. CVPR*, 2017.
- [29] J. Shi and J. Malik, "Normalized cuts and image segmentation," Departmental Papers (CIS), p. 107, 2000.
- [30] U. Von Luxburg, "A tutorial on spectral clustering," Statistics and computing, vol. 17, no. 4, pp. 395–416, 2007.

- [31] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wiegele, "Computational approaches to max-cut," in *Handbook on semidefinite, conic and polynomial optimization*, Springer, 2012, pp. 821–847.
- [32] C. Bodnar, C. Cangea, and P. Liò, "Deep graph mapper: Seeing graphs through the neural lens," arXiv preprint arXiv:2002.03864, 2020.
- [33] G. Singh, F. Mémoli, and G. E. Carlsson, "Topological methods for the analysis of high dimensional data sets and 3d object recognition.," in SPBG, 2007, pp. 91–100.

Backup

Convolutional operators

- 1997: first GNN (works only for DAGs) [22]
- 2005: first use of the term "GNN" [23]
- 2009: improved version of 2005 paper [24]
- 2013: First GCN [25]
- 2016: Geometric Deep Learning [26]

^[22] A. Sperduti et al., "Supervised neural networks for the classification of structures," IEEE Transactions on Neural Networks, vol. 8, no. 3, 1997.
[23] M. Gori et al., "A new model for learning in graph domains," vol. 2, 2005.

^[24] F. Scarselli et al., "The graph neural network model," IEEE Transactions on Neural Networks, vol. 20, no. 1, 2009.

^[25] J. Bruna et al., "Spectral networks and locally connected networks on graphs," arXiv preprint arXiv:1312.6203, 2013.

^[26] M. M. Bronstein et al., "Geometric deep learning: going beyond euclidean data," IEEE Signal Processing Magazine, vol. 34, no. 4, 2017.

Graph-level v. node-level

Graph-level learning. (e.g., molecules)

Node-level learning. (e.g., social networks) Powers of ${\sf R}$

Let's consider the effect of applying R^2 to X:

$$(\mathsf{RRX})_i = \sum_{j \in \mathcal{N}(i)} \mathsf{r}_{ij} (\mathsf{RX})_j = \sum_{j \in \mathcal{N}(i)} \sum_{k \in \mathcal{N}(j)} \mathsf{r}_{ij} \cdot \mathsf{r}_{jk} \cdot \mathsf{x}_k$$

Key idea: by applying R^{K} we read from the K-th order neighbourhood of a node.

Message Passing Neural Networks [27]

^[27] J. Gilmer et al., "Neural message passing for quantum chemistry," arXiv preprint arXiv:1704.01212, 2017.

A general scheme for message-passing networks:

$$\mathsf{x}'_{i} = \gamma \left(\mathsf{x}_{i}, \Box_{j \in \mathcal{N}(i)} \phi \left(\mathsf{x}_{i}, \mathsf{x}_{j}, \mathsf{e}_{ji} \right) \right),$$

- φ: message function, depends on x_i, x_j and possibly the edge attribute e_{ji} (we call messages m_{ji});
- □_{j∈N(i)}: aggregation function (sum, average, max, or something else...);
- γ : **update function**, final transformation to obtain new attributes after aggregating messages.

^[27] J. Gilmer et al., "Neural message passing for quantum chemistry," arXiv preprint arXiv:1704.01212, 2017.

Chebyshev Polynomials [2]

A recursive definition using Chebyshev polynomials:

$$egin{array}{lll} {\sf T}^{(0)} &= {\sf I} \ {\sf T}^{(1)} &= { ilde {\sf L}} \ {\sf T}^{(k)} &= 2 \cdot { ilde {\sf L}} \cdot {\sf T}^{(k-1)} - {\sf T}^{(k-2)} \end{array}$$

Where
$$\tilde{L} = \frac{2L_n}{\lambda_{max}} - I$$
 and $L_n = I - D^{-1/2}AD^{-1/2}$

x

Layer: $X' = \sigma \left(\sum_{k=0}^{N} \mathsf{T}^{(k)} \mathsf{X} \Theta^{(k)} \right)$

 $T^{(n)}(x)$

^[2] M. Defferrard et al., "Convolutional neural networks on graphs with fast localized spectral filtering," Advances in Neural Information Processing Systems, 2016.

Graph Convolutional Networks [3]

Polynomial of order $K \rightarrow K$ layers of order 1;

Three simplifications:

1.
$$\lambda_{\max} = 2 \rightarrow \tilde{L} = \frac{2L_n}{\lambda_{\max}} - I = -D^{-1/2}AD^{-1/2} = -A_n$$

2. $K = 1 \rightarrow X' = X\Theta^{(0)} - A_nX\Theta^{(1)}$
3. $\Theta = \Theta^{(0)} = -\Theta^{(1)}$
Layer: $X' = \sigma\left((I + A_n)X\Theta\right) = \sigma\left(\tilde{A}X\Theta\right)$
For stability: $\tilde{A} = D^{-1/2}(I + A)D^{-1/2}$

Key idea: incorporate edge attributes into the messages.

Consider a MLP $\phi : \mathbb{R}^S \to \mathbb{R}^{FF'}$ called a **filter** generating network:

 $\Theta^{(ji)} = \operatorname{reshape}(\phi(e_{ji}))$

Use the edge-dependent weights to compute messages:

$$\mathbf{x}'_i = \Theta^{(i)} \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \Theta^{(ji)} \mathbf{x}_j + \mathbf{b}$$

^[28] M. Simonovsky et al., "Dynamic edgeconditioned filters in convolutional neural networks on graphs," 2017.

Graph Convolution

Recall: CNNs compute a discrete convolution

$$(f \star g)[n] = \sum_{m=-M}^{M} f[n-m]g[m]$$
 (1)

Given two functions f and g, their convolution $f \star g$ can be expressed as:

$$f \star g = \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ f \right\} \cdot \mathcal{F} \left\{ g \right\} \right\}$$
(2)

Where \mathcal{F} is the **Fourier transform** and \mathcal{F}^{-1} its inverse.

Key intuition - we are representing a function in a different basis.

The eigenvectors of the Laplacian for a path graph can be obtained analytically:

$$\mathbf{u}_{k}[n] = \begin{cases} 1, & \text{for } k = 0\\ e^{i\pi(k+1)n/N}, & \text{for odd } k, k < N-1\\ e^{-i\pi kn/N}, & \text{for even } k, k > 0\\ cos(\pi n), & \text{for odd } k, k = N-1 \end{cases}$$

Looks familiar?

- Drop the "grid" assumption
- Replace $e^{-i\frac{2\pi}{N}kn}$ with generic $u_k[n]$:

$$\mathcal{F}_{G}\left\{f\right\}\left[k\right] = \sum_{n=0}^{N-1} f[n] \mathsf{u}_{k}[n]$$

• GFT:
$$\mathcal{F}_G{f} = \hat{f} = U^{\top}f;$$

• IGFT: $\mathcal{F}_G^{-1}{\hat{f}} = f = U\hat{f}$

Recall:

• Convolution theorem: $f \star g = \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ f \right\} \cdot \mathcal{F} \left\{ g \right\} \right\}$

• Spectral theorem:
$$L = U\Lambda U^{\top} = \sum_{i=0}^{N-1} \lambda_i u_i u_i^{\top}$$

 $^{1}\odot$ indicates element-wise multiplication

Pooling operators

Pooling in CNNs

Example 1: partition. $\{ \bigcirc \bigcirc \bigcirc \}$ $\{ \bigcirc \bigcirc \bigcirc \bigcirc \}$

Example 2: cover (possible overlaps). $\{ \bigcirc \bigcirc \bigcirc \bigcirc \}$ $\{ \bigcirc \bigcirc \bigcirc \bigcirc \}$ $\{ \bigcirc \bigcirc \bigcirc \bigcirc \}$

Example 3: sparse. $\left\{ \bigcirc \right\} \ \left\{ \bigcirc \right\} \ \left\{ \bigcirc \right\} \ \left\{ \bigcirc \right\}$

Select, Reduce, Connect [6]

^[6] D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," Under review at IEEE TNNLS, 2021.

MinCut

Spectral clustering [30]

The low-frequency eigenvectors naturally cluster the nodes.

Idea: run k-means clustering (or similar) using the first few eigenvectors.

[30] U. Von Luxburg, "A tutorial on spectral clustering," Statistics and computing, vol. 17, no. 4, 2007.

^[29] J. Shi et al., "Normalized cuts and image segmentation," Departmental Papers (CIS), 2000.

MinCut pooling

(a) Original

(b) SC

(c) DiffPool

(d) MinCut

Node decimation [13]

Alternative: use the highest-frequency eigenvector to do something similar to a regular subsampling.

^[31] L. Palagi et al., "Computational approaches to max-cut," 2012.

^[13] F. M. Bianchi et al., "Hierarchical representation learning in graph neural networks with node decimation pooling," IEEE Transactions on Neural Networks and Learning Systems, 2020.

Key idea: learn to output S^{\top} by giving node features X as input to a neural network.

- **DiffPool** [7]: GNN for S[⊤], regularize with "link prediction" loss;
- **MinCutPool** [8]: MLP for S[⊤], regularize with "minimum cut" loss (same objective as spectral clustering);
- Deep Graph Mapper [32]: combine Mapper [33] and GCN [3] to compute clusters.

^[7] R. Ying et al., "Hierarchical Graph Representation Learning with Differentiable Pooling," arXiv preprint arXiv:1806.08804, 2018.

^[8] F. M. Bianchi et al., "Spectral Clustering with Graph Neural Networks for Graph Pooling," International Conference on Machine Learning, 2020.

^[32] C. Bodnar et al., "Deep Graph Mapper: Seeing Graphs through the Neural Lens," arXiv preprint arXiv:2002.03864, 2020.

Top-K methods

Reduce: $X' = X_i$ - Connect: $A' = A_{i,i}$

Problems:

- Top-k selection is non-differentiable (no way of training φ). Solved by gating (multiplying) the node attributes with the scores.
- Graph is likely to be disconnected or simply cut off (like in the image on the right). Not really solvable...

- Dense vs. Sparse: how many nodes are selected for the supernodes;
- Fixed vs. Adaptive: how many supernodes does the selection compute;
- Trainable vs. Non-trainable: learn to pool from data or not;

The graph equivalent must be **invariant to permutations** of the nodes:

In CNNs, after convolution, we usually **flatten** out the images to give a vector as input to a MLP:

1	2	3		
4	5	6		
7	8	9		

1	2	3	4	5	6	7	8	9

More results

Molecule generation [17]

Figure 8: Valid, novel, and unique molecules

^[17] D. Grattarola et al., "Adversarial autoencoders with constant-curvature latent manifolds," Applied Soft Computing, 2019.