
Graph Neural Networks

Operators and Architectures

Daniele Grattarola

Dissertation defence - December 10, 2021

Advisor: Prof. Alippi
Co-advisor: Prof. Livi (U. Manitoba)

Internal committee: Profs. Crestani, Gambardella
External committee: Profs. Angelov (Lancaster U.), Panayiotou (U. Cyprus), Sperduti (U. Padova)

Graphs are everywhere

Social networks

Engineering

Computer vision

Biology

Language

Neuroscience

1

Graphs are everywhere

Combinatorial generalisation

Combining known concepts to represent new ones.

[1] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.
2

Graphs are everywhere

Matte

Small
Glossy

Big

Combinatorial generalisation

Combining known concepts to represent new ones.

[1] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.
2

From CNNs to GNNs

Convolution Pooling Convolution Flatten

Message	passing Message	passingPooling

Global	pooling

3

From CNNs to GNNs

Convolution Pooling Convolution Flatten

Message	passing Message	passingPooling

Global	pooling

3

Research summary

Convolution Pooling: SRC

Operators

ARMA

Bianchi et al., TPAMI 2021

MinCut NDP

Bianchi et al., ICML 2020

Bianchi et al., TNNLS 2020

Grattarola et al., in review, 2021

4

Research summary

Convolution Pooling: SRC

Operators

ARMA

Bianchi et al., TPAMI 2021

MinCut NDP

Bianchi et al., ICML 2020

Bianchi et al., TNNLS 2020

Grattarola et al., in review, 2021

Zambon et al., IJCNN 2019

Architectures

Non-Euclidean AE
Change detection

Grattarola et al., ASOC 2019

Grattarola et al., TNNLS 2019

Molecule generation

Explainable GNNs Seizure localization Grattarola et al., in review, 2021

Autoregressive GNNs
Graph dynamical systems

Applications

Graph cellular automata Grattarola et al., NeurIPS 2021

4

Research summary

Convolution Pooling: SRC

Operators

ARMA

Bianchi et al., TPAMI 2021

MinCut NDP

Bianchi et al., ICML 2020

Bianchi et al., TNNLS 2020

Grattarola et al., in review, 2021

Spektral

Grattarola et al., CIM 2020

Zambon et al., IJCNN 2019

Architectures

Non-Euclidean AE
Change detection

Grattarola et al., ASOC 2019

Grattarola et al., TNNLS 2019

Molecule generation

Explainable GNNs Seizure localization Grattarola et al., in review, 2021

Autoregressive GNNs
Graph dynamical systems

Applications

Graph cellular automata Grattarola et al., NeurIPS 2021

4

Operators

Notation

• Graph: nodes connected by edges

• X: node attributes

• E: edge attributes

• A: adjacency matrix

• Structure operator S: sij ̸= 0 ⇐⇒ aij ̸= 0

Adjacency matrix
N × N

Node attributes
N × Dn

Edge attributes
N × N × De

x1

x2 x3

x4

e12 e13

e14

5

Convolutional operators

Convolutional operators - Polynomial

Typical graph convolutional networks compute a
polynomial of the structure operator S [2], [3]:

X′ =
K∑

k=0

SkXΘ(k)

with learnable weights Θ(k) ∈ RDn×D′
n .

Θ(0)

Θ(1)

Θ(2)

[2] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” Advances in Neural Information Processing
Systems, 2016.

[3] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convolutional Networks,” International Conference on Learning Representations
(ICLR), 2017.

6

Convolutional operators - Rational

Convolution with rational filter:

X′ =

(
I +

K∑
k=1

qkSk

)−1(K−1∑
k=0

pkSk

)
X

ARMA approximation of a rational filter [4]:

X(t+1) = aSX(t) + bX

[4] E. Isufi et al., “Autoregressive moving average graph filtering,” arXiv preprint arXiv:1602.04436, 2016.

7

Convolutional operators - Rational

Convolution with rational filter:

X′ =

(
I +

K∑
k=1

qkSk

)−1(K−1∑
k=0

pkSk

)
X

ARMA approximation of a rational filter [4]:

X(t+1) = aSX(t) + bX

[4] E. Isufi et al., “Autoregressive moving average graph filtering,” arXiv preprint arXiv:1602.04436, 2016.

7

ARMA GNNs [5]

Approximate recursion with finite number of propagation steps: X(t+1) = σ
(
SX(t)W + XV

)
[5] F. M. Bianchi, D. Grattarola, et al., “Graph neural networks with convolutional arma filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

8

ARMA GNNs - Results

Table 1: Node classification accuracy.

Method Cora Citeseer Pubmed PPI

GAT 83.1 ±0.6 70.9 ±0.6 78.5 ±0.3 81.3 ±0.1

GraphSAGE 73.7 ±1.8 65.9 ±0.9 78.5 ±0.6 70.0 ±0.0

GIN 75.1 ±1.7 63.1 ±2.0 77.1 ±0.7 78.1 ±2.6

GCN 81.5 ±0.4 70.1 ±0.7 79.0 ±0.5 80.8 ±0.1

Chebyshev 79.5 ±1.2 70.1 ±0.8 74.4 ±1.1 86.4 ±0.1

CayleyNet 81.2 ±1.2 67.1 ±2.4 75.6 ±3.6 84.9 ±1.2

ARMA 83.4 ±0.6 72.5 ±0.4 78.9 ±0.3 90.5 ±0.3

Table 2: Graph classification accuracy.

Method Enzymes Proteins D&D MUTAG BHard

GAT 51.7±4.3 72.3±3.1 70.9±4.0 87.3±5.3 30.1±0.7

GraphSAGE 60.3±7.1 70.2±3.9 73.6±4.1 85.7±4.7 71.8±1.0

GIN 45.7±7.7 71.4±4.5 71.2±5.4 86.3±9.1 72.1±1.1

GCN 53.0±5.3 71.0±2.7 74.7±3.8 85.7±6.6 71.9±1.2

Chebyshev 57.9±2.6 72.1±3.5 73.7±3.7 82.6±5.2 71.3±1.2

CayleyNet 43.1±10.7 65.6±5.7 70.3±11.6 87.8±10.0 70.7±2.4

ARMA 60.6±7.2 73.7±3.4 77.6±2.7 91.5±4.2 74.1±0.5

Table 3: Graph signal classification accuracy.

GNN layer MNIST 20news

GCN 98.48 ± 0.2 65.45 ± 0.2

Chebyshev 99.14 ± 0.1 68.24 ± 0.2

CayleyNet 99.18 ± 0.1 68.84 ± 0.3

ARMA 99.20 ± 0.1 70.02 ± 0.1

Table 4: Graph regression mean squared error.

Property GCN Chebyshev CayleyNet ARMA

mu 0.445±0.007 0.433±0.003 0.442±0.009 0.394±0.005

alpha 0.141±0.016 0.171±0.008 0.118±0.005 0.098±0.005

HOMO 0.371±0.030 0.391±0.012 0.336±0.007 0.326±0.010

LUMO 0.584±0.051 0.528±0.005 0.679±0.148 0.508±0.011

gap 0.650±0.070 0.565±0.015 0.758±0.106 0.552±0.013

R2 0.132±0.005 0.294±0.022 0.185±0.043 0.119±0.019

ZPVE 0.349±0.022 0.358±0.001 0.555±0.174 0.338±0.001

U0_atom 0.064±0.003 0.126±0.017 1.493±1.414 0.053±0.004

Cv 0.192±0.012 0.215±0.010 0.184±0.009 0.163±0.007

9

Pooling operators

Pooling operators

Goal: reduce the size of the graph.

Why:

• Computational cost

• Invariance to feature location

• Abstraction

Idea: 3-step process proposed in [6]:
Select, Reduce, Connect (SRC).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.

10

Pooling operators

Goal: reduce the size of the graph.
Why:

• Computational cost

• Invariance to feature location

• Abstraction

Idea: 3-step process proposed in [6]:
Select, Reduce, Connect (SRC).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.

10

Pooling operators

Goal: reduce the size of the graph.
Why:

• Computational cost

• Invariance to feature location

• Abstraction

Idea: 3-step process proposed in [6]:
Select, Reduce, Connect (SRC).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.

10

Pooling operators as SRC

Method Select Reduce Connect

DiffPool [7] S⊤ = GNN1(A,X) (w/ auxiliary loss) X′ = S · GNN2(A,X) A′ = SAS⊤

MinCut [8] S⊤ = MLP(X) (w/ auxiliary loss) X′ = SX A′ = SAS⊤

NMF [9] Factorise: A = WH → S = H X′ = SX A′ = SAS⊤

LaPool [10]


V = ∥LX∥d ;
i = {i | Vi > Vj ,∀j ∈ N (i)}
S⊤ = SparseMax

(
β

XX⊤
i

∥X∥∥Xi∥

) X′ = SX A′ = SAS⊤

Graclus [11] Sk =
{

xi , xj | arg maxj
(Aij

Dii
+

Aij

Djj

)}
X′ = SX METIS [12]

NDP [13] i = {i | umax,i > 0} X′ = Xi Kron r. [14]

Top-K [15] y = Xp
∥p∥ ; i = topK (y) X′ = (X ⊙ σ(y))i; A′ = Ai,i

SAGPool [16] y = GNN(A,X); i = topK (y) X′ = (X ⊙ σ(y))i; A′ = Ai,i
11

Selection

The selection stage computes K supernodes:

Sel : G 7→ S = {S1, . . . ,SK},

Sk = {(xi , si) | si ∈ R>0} .

{ } { } { }

S = ∈ RK×N

12

Reduction

The reduction stage aggregates the
supernodes in a permutation-invariant way:

Red : G,Sk 7→ x′k

Typical approach: X′ = SX (∈ RK×F)

{ } { } { }

13

Connection

The connection function decides whether two
supernodes are connected:

Con : G,Sk ,Sl 7→ e′kl

Typical approach: A′ = SAS⊤ (∈ RK×K)

{ } { } { }

a′12 = 2 a′23 = 1

14

MinCut pooling [8]

• Select: S⊤ = MLP(X)

• Reduce: X′ = SX

• Connect: A′ = SAS⊤

• Custom loss:

L = −
Tr(SAS⊤)

Tr(SDS⊤)︸ ︷︷ ︸
MinCut

+

∥∥∥∥ SS⊤

∥SS⊤∥F
−

IK√
K

∥∥∥∥
F︸ ︷︷ ︸

Orthogonality

�

� 
�

�
(�+1)

pool

�
(�)

MP MLP�
(�+1)

MP

MinCutPool

�pool

�
(�+1)

pool

� 
�

[8] F. M. Bianchi, D. Grattarola, et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” International Conference on Machine
Learning, 2020.

15

Node decimation pooling [13]

• Idea: regular subsampling of the nodes
using highest-frequency eigenvector umax.

• Select: I = {i | umax[i] > 0}
• Reduce: X′ = XI

• Connect: Kron reduction [14]

[14] F. Dorfler et al., “Kron Reduction of Graphs With Applications to Electrical Networks,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 60, no. 1, 2013.

[13] F. M. Bianchi, D. Grattarola, et al., “Hierarchical representation learning in graph neural networks with node decimation pooling,” IEEE Trans-
actions on Neural Networks and Learning Systems, 2020.

16

Pooling - Results

Table 5: Graph classification accuracy.

Dataset WL Dense No-pool Graclus NDP DiffPool Top-K SAGpool MinCut

Bench-easy 92.6±0.0 29.3±0.3 98.5±0.3 97.5±0.5 97.9±0.5 98.6±0.4 82.4±8.9 84.2±2.3 99.0±0.0

Bench-hard 60.0±0.0 29.4±0.3 67.6±2.8 69.0±1.5 72.6±0.9 69.9±1.9 42.7±15.2 37.7±14.5 73.8±1.9

Mutagen. 81.7±1.1 68.4±0.3 78.0±1.3 74.4±1.8 77.8±2.3 77.6±2.7 71.9±3.7 72.4±2.4 79.9±2.1

Proteins 71.2±2.6 68.7±3.3 72.6±4.8 68.6±4.6 73.3±3.7 72.7±3.8 69.6±3.5 70.5±2.6 76.5±2.6

DD 78.6±2.7 70.6±5.2 76.8±1.5 70.5±4.8 72.0±3.1 79.3±2.4 69.4±7.8 71.5±4.5 80.8±2.3

COLLAB 74.8±1.3 79.3±1.6 82.1±1.8 77.1±2.1 79.1±1.5 81.8±1.4 79.3±1.8 79.2±2.0 83.4±1.7

Reddit-B 68.2±1.7 48.5±2.6 80.3±2.6 79.2±0.4 84.3±2.4 86.8±2.1 74.7±4.5 73.9±5.1 91.4±1.5

MinCut achieves state of the art on many graph classification benchmarks (results from [8]).

[8] F. M. Bianchi, D. Grattarola, et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” International Conference on Machine
Learning, 2020.

17

Pooling operators - Results

Table 6: Reconstruction MSE (scale of 10−3).

DiffPool MinCut NMF LaPool TopK SAGPool Graclus NDP

Grid2d 0.010 ±0.005 0.002 ±0.002 0.000 ±0.000 0.002 ±0.001 18.86 ±3.923 16.61 ±3.270 0.109 ±0.000 0.000 ±0.000

Ring 0.018 ±0.003 0.001 ±0.000 0.000 ±0.000 0.052 ±0.046 132.2 ±4.133 148.5 ±30.10 0.600 ±0.000 0.000 ±0.000

Bunny 3.901 ±0.275 0.208 ±0.034 0.339 ±0.055 0.610 ±0.103 15.32 ±3.557 16.10 ±1.722 0.332 ±0.043 0.373 ±0.070

Airplane 0.094 ±0.022 0.005 ±0.002 0.020 ±0.000 0.002 ±0.000 0.096 ±0.028 0.268 ±0.081 0.009 ±0.000 0.012 ±0.000

Car 0.143 ±0.127 0.535 ±0.200 0.016 ±0.001 OOR 0.229 ±0.023 0.204 ±0.029 0.102 ±0.000 0.009 ±0.000

Guitar 0.101 ±0.025 0.313 ±0.000 0.007 ±0.000 OOR 0.056 ±0.051 0.060 ±0.044 0.010 ±0.000 0.005 ±0.000

Person 0.077 ±0.041 0.301 ±0.000 0.001 ±0.000 OOR 0.055 ±0.012 0.062 ±0.033 0.001 ±0.000 0.001 ±0.000

NDP works better for geometric data, where regular subsampling is desirable (results from [6]).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.

18

Pooling operators - Results

NDP works better for geometric data, where regular subsampling is desirable (results from [6]).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.

19

Architectures

Architectures

• Non-Euclidean Autoencoders

• Explainable GNNs

• Auto-regressive GNNs

20

Non-Euclidean Autoencoders

Non-Euclidean Autoencoders [17]

Goal: represent graphs on a non-Euclidean
manifold with constant curvature (CCM).
How: adversarial AE with non-Euclidean prior.

Input [0, 1]

R
eL
U

Dense decoder

Discriminator

R
eL
U

R
eL
U

R
eL
U

R
eL
U

R
eL
U

Â

X ̂

Ê

A

X

E

Po
ol
in
g

Graph
conv.

(θ)Pκ


κ

ℝ
d+1

min
fenc

max
fdis

Ez∼p(z) [log fdis(z)] + Ex∼pdata(x) [log(1 − (fdis ◦ fenc)(x)] .

[17] D. Grattarola et al., “Adversarial autoencoders with constant-curvature latent manifolds,” Applied Soft Computing, 2019.

21

Change detection on CCMs [18]

Hugging Punching

0

2

4

6

8

10

12

S w

= 1
Threshold hw

Change point

0

5

10

15

S w

= 0

0 10000 20000 30000 40000 50000
Timestep

0

10

20

30

40

S w

= 1

[18] D. Grattarola et al., “Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds,” IEEE Transactions
on Neural Networks and Learning Systems, 2019.

22

Explainable GNNs

Explainable GNNs

Make GNN explainable by introducing attention in the readout operation:

z = Attn-RO(h) =
N∑
j=1

αjhj , where αj =
exp (hj · a)∑N

k=1 exp (hk · a)
,

23

Explainable GNNs for seizure localization [19]

Idea: use attention scores to identify the brain areas where seizures originate.

[19] D. Grattarola et al., “Unsupervised seizure localisation with attention-based graph neural networks,” Under review at IEEE TBME, 2021.

24

Seizure localization - Results

0.0 0.5 1.0
Normalized score

LPIH1
RAT3

LFP10
LFP6
RPT1
RHD1
RAF2
RAF1

RPIH4
RINS1

Top-10 electrodes

0.00 0.25 0.50 0.75 1.00
Normalized score

RHH9
LHB8
RHB8
LHB9

RI5
RHB7
LHB3

RHH10
LHB1
LHB2

Top-10 electrodes

0.00 0.25 0.50 0.75 1.00
Normalized score

LAHC7
LMPH2
LAHC8
LPPH8
LMPH7
LPHC8
LMHC8
LMPH3
LPPH6
LPPH7

Top-10 electrodes

Known seizure onset zone: GNN shows strong correlation with clinical diagnosis.

25

Seizure localization - Results

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(a) Unknown SOZ

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(b) Unknown SOZ

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(c) Known SOZ

Unknown seizure onset zone: GNN also shows uncertainty.

26

Auto-regressive GNNs

Auto-regressive GNNs [20]

Goal: predict the next observation of a graph-valued dynamical system.

[20] D. Zambon et al., “Autoregressive Models for Sequences of Graphs,” International Joint Conference on Neural Networks, 2019.

27

Autoregressive GNNs

Traditional AR model Graph AR model

f : Rp×d → Rd

ϕ : Gp → G

xt+1 = f (xt , xt−1, . . . , xt−p+1) + ϵ

Gt+1 = H(ϕ(Gt , . . . ,Gt−p+1), η)

E[ϵi] = 0

ϕ(Gt , . . . ,Gt−p+1) ∈ Ef
η[H(ϕ(Gt , . . . ,Gt−p+1), η)]

Var [ϵi] = σ2 < ∞

Var f [η] < ∞

Where:

Ef [G] = arg min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

Var f [G] := min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

28

Autoregressive GNNs

Traditional AR model Graph AR model

f : Rp×d → Rd ϕ : Gp → G

xt+1 = f (xt , xt−1, . . . , xt−p+1) + ϵ

Gt+1 = H(ϕ(Gt , . . . ,Gt−p+1), η)

E[ϵi] = 0

ϕ(Gt , . . . ,Gt−p+1) ∈ Ef
η[H(ϕ(Gt , . . . ,Gt−p+1), η)]

Var [ϵi] = σ2 < ∞

Var f [η] < ∞

Where:

Ef [G] = arg min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

Var f [G] := min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

28

Autoregressive GNNs

Traditional AR model Graph AR model

f : Rp×d → Rd ϕ : Gp → G

xt+1 = f (xt , xt−1, . . . , xt−p+1) + ϵ Gt+1 = H(ϕ(Gt , . . . ,Gt−p+1), η)

E[ϵi] = 0

ϕ(Gt , . . . ,Gt−p+1) ∈ Ef
η[H(ϕ(Gt , . . . ,Gt−p+1), η)]

Var [ϵi] = σ2 < ∞

Var f [η] < ∞

Where:

Ef [G] = arg min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

Var f [G] := min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

28

Autoregressive GNNs

Traditional AR model Graph AR model

f : Rp×d → Rd ϕ : Gp → G

xt+1 = f (xt , xt−1, . . . , xt−p+1) + ϵ Gt+1 = H(ϕ(Gt , . . . ,Gt−p+1), η)

E[ϵi] = 0 ϕ(Gt , . . . ,Gt−p+1) ∈ Ef
η[H(ϕ(Gt , . . . ,Gt−p+1), η)]

Var [ϵi] = σ2 < ∞

Var f [η] < ∞

Where:

Ef [G] = arg min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

Var f [G] := min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

28

Autoregressive GNNs

Traditional AR model Graph AR model

f : Rp×d → Rd ϕ : Gp → G

xt+1 = f (xt , xt−1, . . . , xt−p+1) + ϵ Gt+1 = H(ϕ(Gt , . . . ,Gt−p+1), η)

E[ϵi] = 0 ϕ(Gt , . . . ,Gt−p+1) ∈ Ef
η[H(ϕ(Gt , . . . ,Gt−p+1), η)]

Var [ϵi] = σ2 < ∞ Var f [η] < ∞

Where:

Ef [G] = arg min
G′∈G

∫
G

d (G,G′)
2
dQ (G) Var f [G] := min

G′∈G

∫
G

d (G,G′)
2
dQ (G)

28

Auto-regressive GNN

Input
Window of observations up to time t.

Graph embedding
GNN block applied in parallel to each graph.

Predictor
RNN predicts the graph embedding at t + 1.

Graph decoder
Maps the predicted embedding to the predicted
graph.

29

Auto-regressive GNN

Input
Window of observations up to time t.

Graph embedding
GNN block applied in parallel to each graph.

Predictor
RNN predicts the graph embedding at t + 1.

Graph decoder
Maps the predicted embedding to the predicted
graph.

29

Auto-regressive GNN

Input
Window of observations up to time t.

Graph embedding
GNN block applied in parallel to each graph.

Predictor
RNN predicts the graph embedding at t + 1.

Graph decoder
Maps the predicted embedding to the predicted
graph.

29

Auto-regressive GNN

Input
Window of observations up to time t.

Graph embedding
GNN block applied in parallel to each graph.

Predictor
RNN predicts the graph embedding at t + 1.

Graph decoder
Maps the predicted embedding to the predicted
graph.

29

Auto-regressive GNNs - Results

Figure 4: Distance b/w predicted and true graphs. Figure 5: Loss v. complexity of the problem.

30

Spektral

Spektral

Spektral

Python library for GNNs:

• TensorFlow/Keras

• 25+ layers for convolution and pooling

• Easy to use, flexible, fast

• Almost 2000 ★ on github.com

Website: graphneural.network
Featured on IEEE Computational Intelligence Magazine [21].

[21] D. Grattarola et al., “Graph neural networks in Tensorflow and Keras with Spektral,” IEEE Computational Intelligence Magazine, 2021.

31

github.com
graphneural.network

Conclusions

Summary

Convolution Pooling: SRC

Operators

ARMA

Bianchi et al., TPAMI 2021

MinCut NDP

Bianchi et al., ICML 2020

Bianchi et al., TNNLS 2020

Grattarola et al., in review, 2021

Spektral

Grattarola et al., CIM 2020

Zambon et al., IJCNN 2019

Architectures

Non-Euclidean AE
Change detection

Grattarola et al., ASOC 2019

Grattarola et al., TNNLS 2019

Molecule generation

Explainable GNNs Seizure localization Grattarola et al., in review, 2021

Autoregressive GNNs
Graph dynamical systems

Applications

Graph cellular automata Grattarola et al., NeurIPS 2021

32

References i

[1] P. W. Battaglia, J. B. Hamrick, V. Bapst, et al., “Relational inductive biases, deep
learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” International Conference on Learning Representations (ICLR), 2017.

[4] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving average graph
filtering,” arXiv preprint arXiv:1602.04436, 2016.

[5] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural networks with
convolutional arma filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

33

References ii

[6] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, “Understanding pooling in
graph neural networks,” Under review at IEEE TNNLS, 2021.

[7] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical graph
representation learning with differentiable pooling,” arXiv preprint arXiv:1806.08804,
2018.

[8] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with graph neural
networks for graph pooling,” International Conference on Machine Learning, 2020.

[9] D. Bacciu and L. Di Sotto, “A non-negative factorization approach to node pooling in
graph convolutional neural networks,” in Proceedings of the 18th International
Conference of the Italian Association for Artificial Intelligence, AIIA, 2019.

[10] E. Noutahi, D. Beani, J. Horwood, and P. Tossou, “Towards interpretable sparse graph
representation learning with laplacian pooling,” arXiv preprint arXiv:1905.11577, 2019.

34

References iii

[11] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigenvectors a
multilevel approach,” IEEE transactions on pattern analysis and machine intelligence,
vol. 29, no. 11, pp. 1944–1957, 2007.

[12] G. Karypis, “Metis: Unstructured graph partitioning and sparse matrix ordering system,”
Technical report, 1997.

[13] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Hierarchical representation learning
in graph neural networks with node decimation pooling,” IEEE Transactions on Neural
Networks and Learning Systems, 2020.

[14] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to electrical
networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 1,
pp. 150–163, 2013, issn: 1549-8328. doi: 10.1109/TCSI.2012.2215780.

[15] S. J. Hongyang Gao, “Graph u-net,” Submitted to ICLR, 2019.

35

https://doi.org/10.1109/TCSI.2012.2215780

References iv

[16] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” arXiv preprint
arXiv:1904.08082, 2019.

[17] D. Grattarola, L. Livi, and C. Alippi, “Adversarial autoencoders with constant-curvature
latent manifolds,” Applied Soft Computing, 2019.

[18] D. Grattarola, D. Zambon, C. Alippi, and L. Livi, “Change detection in graph streams by
learning graph embeddings on constant-curvature manifolds,” IEEE Transactions on
Neural Networks and Learning Systems, 2019.

[19] D. Grattarola, L. Livi, C. Alippi, R. Wennberg, and T. Valiante, “Unsupervised seizure
localisation with attention-based graph neural networks,” Under review at IEEE TBME,
2021.

[20] D. Zambon, D. Grattarola, L. Livi, and C. Alippi, “Autoregressive models for sequences
of graphs,” International Joint Conference on Neural Networks, 2019.

36

References v

[21] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and keras with
spektral,” IEEE Computational Intelligence Magazine, 2021.

[22] A. Sperduti and A. Starita, “Supervised neural networks for the classification of
structures,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 714–735, 1997.

[23] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,” in
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., IEEE,
vol. 2, 2005, pp. 729–734.

[24] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural
network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.

[25] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

37

References vi

[26] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep
learning: Going beyond euclidean data,” IEEE Signal Processing Magazine, vol. 34, no. 4,
pp. 18–42, 2017.

[27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.

[28] M. Simonovsky and N. Komodakis, “Dynamic edgeconditioned filters in convolutional
neural networks on graphs,” in Proc. CVPR, 2017.

[29] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Departmental Papers
(CIS), p. 107, 2000.

[30] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,
no. 4, pp. 395–416, 2007.

38

References vii

[31] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wiegele, “Computational approaches
to max-cut,” in Handbook on semidefinite, conic and polynomial optimization, Springer,
2012, pp. 821–847.

[32] C. Bodnar, C. Cangea, and P. Liò, “Deep graph mapper: Seeing graphs through the
neural lens,” arXiv preprint arXiv:2002.03864, 2020.

[33] G. Singh, F. Mémoli, and G. E. Carlsson, “Topological methods for the analysis of high
dimensional data sets and 3d object recognition.,” in SPBG, 2007, pp. 91–100.

39

Backup

Convolutional operators

History

• 1997: first GNN (works only for DAGs) [22]

• 2005: first use of the term "GNN" [23]

• 2009: improved version of 2005 paper [24]

• 2013: First GCN [25]

• 2016: Geometric Deep Learning [26]

[22] A. Sperduti et al., “Supervised neural networks for the classification of structures,” IEEE Transactions on Neural Networks, vol. 8, no. 3, 1997.

[23] M. Gori et al., “A new model for learning in graph domains,” vol. 2, 2005.

[24] F. Scarselli et al., “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, 2009.

[25] J. Bruna et al., “Spectral networks and locally connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[26] M. M. Bronstein et al., “Geometric deep learning: going beyond euclidean data,” IEEE Signal Processing Magazine, vol. 34, no. 4, 2017.

40

Graph-level v. node-level

Graph-level learning.
(e.g., molecules)

Node-level learning.
(e.g., social networks)

41

Powers of R

Let’s consider the effect of applying R2 to X:

(RRX)i =
∑

j∈N (i)

rij(RX)j =
∑

j∈N (i)

∑
k∈N (j)

rij · rjk · xk

Key idea: by applying RK we read from the K -th
order neighbourhood of a node.

0 2 4 6 8
0

2

4

6

8

K = 1
0 2 4 6 8

0

2

4

6

8

K = 2
0 2 4 6 8

0

2

4

6

8

K = 3
0 2 4 6 8

0

2

4

6

8

K = 4

K = 0

K = 1

K = 2

42

Message Passing Neural Networks [27]

x1

x2 x3

x4

e21 e31

e41

Graph.

m1

m21 m31

m41

e21 e31

e41

Messages.

x′1

m21 m31

m41

e21 e31

e41

Propagation.

[27] J. Gilmer et al., “Neural message passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.

43

Message Passing Neural Networks [27]

A general scheme for message-passing networks:

x′i = γ
(
xi ,□j∈N (i) ϕ (xi , xj , eji)

)
,

• ϕ: message function, depends on xi , xj and possibly the
edge attribute eji (we call messages mji);

• □j∈N (i): aggregation function (sum, average, max, or
something else...);

• γ: update function, final transformation to obtain new
attributes after aggregating messages.

x′1

m21 m31

m41

e21 e31

e41

[27] J. Gilmer et al., “Neural message passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.

44

Chebyshev Polynomials [2]

A recursive definition using Chebyshev polynomials:

T(0) = I

T(1) = L̃

T(k) = 2 · L̃ · T(k−1) − T(k−2)

Where L̃ =
2Ln

λmax
− I and Ln = I − D−1/2AD−1/2

Layer: X′ = σ
(K∑

k=0
T(k)XΘ(k)

)
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

T(n
) (x

)

T(1)

T(2)

T(3)

T(4)

T(5)

T(6)

[2] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” Advances in Neural Information Processing
Systems, 2016.

45

Graph Convolutional Networks [3]

Polynomial of order K → K layers of order 1;

Three simplifications:

1. λmax = 2 → L̃ =
2Ln

λmax
− I = −D−1/2AD−1/2 = −An

2. K = 1 → X′ = XΘ(0) − AnXΘ(1)

3. Θ = Θ(0) = −Θ(1)

Layer: X′ = σ
(
(I + An︸ ︷︷ ︸

Ã

)XΘ
)
= σ

(
ÃXΘ

)
For stability: Ã = D−1/2(I + A)D−1/2

x1

x2 x3

x4

ã12 ã13

ã14

[3] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convolutional Networks,” International Conference on Learning Representations
(ICLR), 2017.

46

Edge-Conditioned Convolution [28]

Key idea: incorporate edge attributes into the messages.

Consider a MLP ϕ : RS → RFF ′
called a filter

generating network:

Θ(ji) = reshape(ϕ(eji))

Use the edge-dependent weights to compute messages:

x′i = Θ(i)xi +
∑

j∈N (i)

Θ(ji)xj + b

m1

m21 m31

m41

e21 e31

e41

[28] M. Simonovsky et al., “Dynamic edgeconditioned filters in convolutional neural networks on graphs,” 2017.

47

Graph Convolution

Discrete Convolution

1 2 3 4 5 6 1 0 1 4 6 8 10* =
Recall: CNNs compute a discrete
convolution

(f ⋆ g)[n] =
M∑

m=−M

f [n −m]g [m] (1)

48

Convolution Theorem

Given two functions f and g , their convolution f ⋆ g can be expressed as:

f ⋆ g = F−1 {F {f } · F {g}} (2)

Where F is the Fourier transform and F−1 its inverse.

49

What is the Fourier transform?

Key intuition – we are representing a function in a different basis.

F{f }[k] = f̂ [k] =
N−1∑
n=0

f [n]e−i 2π
N kn

F−1{f̂ }[n] = f [n] =
1
N

N−1∑
k=0

f̂ [k]e i
2π
N kn

= + +

50

From FT to GFT

The eigenvectors of the Laplacian for a path graph can
be obtained analytically:

uk [n] =


1, for k = 0

e iπ(k+1)n/N , for odd k , k < N − 1

e−iπkn/N , for even k , k > 0

cos(πn), for odd k , k = N − 1

Looks familiar?

5 10 15 20

u 1

5 10 15 20

u 2

5 10 15 20

u 4

51

From FT to GFT

Convolution

Fourier
Transform

Path Graph

Laplacian

Fourier
Eigenbasis

• Drop the “grid” assumption

• Replace e−i 2π
N kn with generic uk [n]:

FG {f } [k] =
N−1∑
n=0

f [n]uk [n]

• GFT: FG{f } = f̂ = U⊤f ;

• IGFT: F−1
G {f̂ } = f = Uf̂

52

Graph Convolution

Recall:

• Convolution theorem: f ⋆ g = F−1 {F {f } · F {g}}

• Spectral theorem: L = UΛU⊤ =
N−1∑
i=0

λiuiu⊤i

Graph signals:
f , g

GFT:
U⊤f ,U⊤g

Multiply: 1

U⊤f ⊙ U⊤g

IGFT:
U
(
U⊤f ⊙ U⊤g

)

Graph filter: U
(
U⊤f ⊙ U⊤g

)
= U · diag(U⊤g)︸ ︷︷ ︸

g(Λ)

·U⊤f = U · g(Λ) · U⊤︸ ︷︷ ︸
g(L)

f = g(L)f

1⊙ indicates element-wise multiplication

53

Pooling operators

Pooling in CNNs

54

Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }

55

Select, Reduce, Connect [6]

Putting everything together:

S = {Sk}k=1:K = Sel(G);︸ ︷︷ ︸
Selection

X ′ = {Red(G,Sk)}k=1:K ;︸ ︷︷ ︸
Reduction

E ′ = {Con(G,Sk ,Sl)}k,l=1:K ;︸ ︷︷ ︸
Connection

2

1

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.

56

Mincut vs. Maxcut

MinCut MaxCut

57

Spectral clustering [30]

The low-frequency eigenvectors naturally
cluster the nodes.

5 10 15 20

u 1

Idea: run k-means clustering (or similar) using
the first few eigenvectors.

[29] J. Shi et al., “Normalized cuts and image segmentation,” Departmental Papers (CIS), 2000.

[30] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, no. 4, 2007.

58

MinCut pooling

(a) SC (b) DiffPool (c) MinCut

(d) SC (e) DiffPool (f) MinCut

(a) Original (b) SC

(c) DiffPool (d) MinCut

59

Node decimation [13]

Alternative: use the highest-frequency
eigenvector to do something similar to a regular
subsampling.

5 10 15 20

u 1
9

[31] L. Palagi et al., “Computational approaches to max-cut,” 2012.

[13] F. M. Bianchi et al., “Hierarchical representation learning in graph neural networks with node decimation pooling,” IEEE Transactions on Neural
Networks and Learning Systems, 2020. 60

Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.

• DiffPool [7]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [8]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [32]: combine Mapper [33] and GCN
[3] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[7] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” arXiv preprint arXiv:1806.08804, 2018.

[8] F. M. Bianchi et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” International Conference on Machine Learning, 2020.

[32] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” arXiv preprint arXiv:2002.03864, 2020.

61

Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

62

Top-K methods

Reduce: X′ = Xi - Connect: A′ = Ai,i

Problems:

• Top-k selection is non-differentiable (no way of training ϕ).
Solved by gating (multiplying) the node attributes with the
scores.

• Graph is likely to be disconnected or simply cut off (like in
the image on the right).
Not really solvable...

Original

Top-K

63

Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;

• Fixed vs. Adaptive: how many supernodes does the selection compute;

• Trainable vs. Non-trainable: learn to pool from data or not;

64

Global Pooling

In CNNs, after convolution, we usually flatten
out the images to give a vector as input to a
MLP:

7
4
1

8
5
2

9
6
3

1 2 3 4 5 6 7 8 9

The graph equivalent must be invariant to
permutations of the nodes:

65

More results

Molecule generation [17]

Figure 8: Valid, novel, and unique molecules

[17] D. Grattarola et al., “Adversarial autoencoders with constant-curvature latent manifolds,” Applied Soft Computing, 2019.

66

	Operators
	Convolutional operators
	Pooling operators
	Architectures
	Non-Euclidean Autoencoders
	Explainable GNNs
	Auto-regressive GNNs
	Spektral
	Conclusions
	Backup
	Convolutional operators
	Graph Convolution
	Pooling operators
	More results

