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Graphs are everywhere

Social networks

Engineering

Computer vision

Biology

Language

Neuroscience
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Graphs are everywhere

Combinatorial generalisation

Combining known concepts to represent new ones.

[1] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.
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Graphs are everywhere

Matte

Small
Glossy

Big

Combinatorial generalisation

Combining known concepts to represent new ones.

[1] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.
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Convolution Pooling Convolution Flatten
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Notation

• Graph: nodes connected by edges

• X: node attributes

• E: edge attributes

• A: adjacency matrix

• Structure operator S: sij ̸= 0 ⇐⇒ aij ̸= 0

Adjacency matrix
N × N

Node attributes
N × Dn

Edge attributes
N × N × De

x1

x2 x3

x4

e12 e13

e14
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Convolutional operators



Convolutional operators - Polynomial

Typical graph convolutional networks compute a
polynomial of the structure operator S [2], [3]:

X′ =
K∑

k=0

SkXΘ(k)

with learnable weights Θ(k) ∈ RDn×D′
n .

Θ(0)

Θ(1)

Θ(2)

[2] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” Advances in Neural Information Processing
Systems, 2016.

[3] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convolutional Networks,” International Conference on Learning Representations
(ICLR), 2017.
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Convolutional operators - Rational

Convolution with rational filter:

X′ =

(
I +

K∑
k=1

qkSk

)−1(K−1∑
k=0

pkSk

)
X

ARMA approximation of a rational filter [4]:

X(t+1) = aSX(t) + bX

[4] E. Isufi et al., “Autoregressive moving average graph filtering,” arXiv preprint arXiv:1602.04436, 2016.
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ARMA GNNs [5]

Approximate recursion with finite number of propagation steps: X(t+1) = σ
(
SX(t)W + XV

)
[5] F. M. Bianchi, D. Grattarola, et al., “Graph neural networks with convolutional arma filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

8



ARMA GNNs - Results

Table 1: Node classification accuracy.

Method Cora Citeseer Pubmed PPI

GAT 83.1 ±0.6 70.9 ±0.6 78.5 ±0.3 81.3 ±0.1

GraphSAGE 73.7 ±1.8 65.9 ±0.9 78.5 ±0.6 70.0 ±0.0

GIN 75.1 ±1.7 63.1 ±2.0 77.1 ±0.7 78.1 ±2.6

GCN 81.5 ±0.4 70.1 ±0.7 79.0 ±0.5 80.8 ±0.1

Chebyshev 79.5 ±1.2 70.1 ±0.8 74.4 ±1.1 86.4 ±0.1

CayleyNet 81.2 ±1.2 67.1 ±2.4 75.6 ±3.6 84.9 ±1.2

ARMA 83.4 ±0.6 72.5 ±0.4 78.9 ±0.3 90.5 ±0.3

Table 2: Graph classification accuracy.

Method Enzymes Proteins D&D MUTAG BHard

GAT 51.7±4.3 72.3±3.1 70.9±4.0 87.3±5.3 30.1±0.7

GraphSAGE 60.3±7.1 70.2±3.9 73.6±4.1 85.7±4.7 71.8±1.0

GIN 45.7±7.7 71.4±4.5 71.2±5.4 86.3±9.1 72.1±1.1

GCN 53.0±5.3 71.0±2.7 74.7±3.8 85.7±6.6 71.9±1.2

Chebyshev 57.9±2.6 72.1±3.5 73.7±3.7 82.6±5.2 71.3±1.2

CayleyNet 43.1±10.7 65.6±5.7 70.3±11.6 87.8±10.0 70.7±2.4

ARMA 60.6±7.2 73.7±3.4 77.6±2.7 91.5±4.2 74.1±0.5

Table 3: Graph signal classification accuracy.

GNN layer MNIST 20news

GCN 98.48 ± 0.2 65.45 ± 0.2

Chebyshev 99.14 ± 0.1 68.24 ± 0.2

CayleyNet 99.18 ± 0.1 68.84 ± 0.3

ARMA 99.20 ± 0.1 70.02 ± 0.1

Table 4: Graph regression mean squared error.

Property GCN Chebyshev CayleyNet ARMA

mu 0.445±0.007 0.433±0.003 0.442±0.009 0.394±0.005

alpha 0.141±0.016 0.171±0.008 0.118±0.005 0.098±0.005

HOMO 0.371±0.030 0.391±0.012 0.336±0.007 0.326±0.010

LUMO 0.584±0.051 0.528±0.005 0.679±0.148 0.508±0.011

gap 0.650±0.070 0.565±0.015 0.758±0.106 0.552±0.013

R2 0.132±0.005 0.294±0.022 0.185±0.043 0.119±0.019

ZPVE 0.349±0.022 0.358±0.001 0.555±0.174 0.338±0.001

U0_atom 0.064±0.003 0.126±0.017 1.493±1.414 0.053±0.004

Cv 0.192±0.012 0.215±0.010 0.184±0.009 0.163±0.007
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Pooling operators

Goal: reduce the size of the graph.

Why:

• Computational cost

• Invariance to feature location

• Abstraction

Idea: 3-step process proposed in [6]:
Select, Reduce, Connect (SRC).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.
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Pooling operators as SRC

Method Select Reduce Connect

DiffPool [7] S⊤ = GNN1(A,X) (w/ auxiliary loss) X′ = S · GNN2(A,X) A′ = SAS⊤

MinCut [8] S⊤ = MLP(X) (w/ auxiliary loss) X′ = SX A′ = SAS⊤

NMF [9] Factorise: A = WH → S = H X′ = SX A′ = SAS⊤

LaPool [10]


V = ∥LX∥d ;
i = {i | Vi > Vj ,∀j ∈ N (i)}
S⊤ = SparseMax

(
β

XX⊤
i

∥X∥∥Xi∥

) X′ = SX A′ = SAS⊤

Graclus [11] Sk =
{

xi , xj | arg maxj
(Aij

Dii
+

Aij

Djj

)}
X′ = SX METIS [12]

NDP [13] i = {i | umax,i > 0} X′ = Xi Kron r. [14]

Top-K [15] y = Xp
∥p∥ ; i = topK (y) X′ = (X ⊙ σ(y))i; A′ = Ai,i

SAGPool [16] y = GNN(A,X); i = topK (y) X′ = (X ⊙ σ(y))i; A′ = Ai,i
11



Selection

The selection stage computes K supernodes:

Sel : G 7→ S = {S1, . . . ,SK},

Sk = {(xi , si ) | si ∈ R>0} .

{ } { } { }

S = ∈ RK×N

12



Reduction

The reduction stage aggregates the
supernodes in a permutation-invariant way:

Red : G,Sk 7→ x′k

Typical approach: X′ = SX (∈ RK×F )

{ } { } { }

13



Connection

The connection function decides whether two
supernodes are connected:

Con : G,Sk ,Sl 7→ e′kl

Typical approach: A′ = SAS⊤ (∈ RK×K )

{ } { } { }

a′12 = 2 a′23 = 1

14



MinCut pooling [8]

• Select: S⊤ = MLP(X)

• Reduce: X′ = SX

• Connect: A′ = SAS⊤

• Custom loss:

L = −
Tr(SAS⊤)

Tr(SDS⊤)︸ ︷︷ ︸
MinCut

+

∥∥∥∥ SS⊤

∥SS⊤∥F
−

IK√
K

∥∥∥∥
F︸ ︷︷ ︸

Orthogonality

�

� 
�

�
(�+1)

pool

�
(�)

MP MLP�
(�+1)

MP

MinCutPool

�pool

�
(�+1)

pool

� 
�

[8] F. M. Bianchi, D. Grattarola, et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” International Conference on Machine
Learning, 2020.
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Node decimation pooling [13]

• Idea: regular subsampling of the nodes
using highest-frequency eigenvector umax.

• Select: I = {i | umax[i ] > 0}
• Reduce: X′ = XI

• Connect: Kron reduction [14]

[14] F. Dorfler et al., “Kron Reduction of Graphs With Applications to Electrical Networks,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 60, no. 1, 2013.

[13] F. M. Bianchi, D. Grattarola, et al., “Hierarchical representation learning in graph neural networks with node decimation pooling,” IEEE Trans-
actions on Neural Networks and Learning Systems, 2020.
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Pooling - Results

Table 5: Graph classification accuracy.

Dataset WL Dense No-pool Graclus NDP DiffPool Top-K SAGpool MinCut

Bench-easy 92.6±0.0 29.3±0.3 98.5±0.3 97.5±0.5 97.9±0.5 98.6±0.4 82.4±8.9 84.2±2.3 99.0±0.0

Bench-hard 60.0±0.0 29.4±0.3 67.6±2.8 69.0±1.5 72.6±0.9 69.9±1.9 42.7±15.2 37.7±14.5 73.8±1.9

Mutagen. 81.7±1.1 68.4±0.3 78.0±1.3 74.4±1.8 77.8±2.3 77.6±2.7 71.9±3.7 72.4±2.4 79.9±2.1

Proteins 71.2±2.6 68.7±3.3 72.6±4.8 68.6±4.6 73.3±3.7 72.7±3.8 69.6±3.5 70.5±2.6 76.5±2.6

DD 78.6±2.7 70.6±5.2 76.8±1.5 70.5±4.8 72.0±3.1 79.3±2.4 69.4±7.8 71.5±4.5 80.8±2.3

COLLAB 74.8±1.3 79.3±1.6 82.1±1.8 77.1±2.1 79.1±1.5 81.8±1.4 79.3±1.8 79.2±2.0 83.4±1.7

Reddit-B 68.2±1.7 48.5±2.6 80.3±2.6 79.2±0.4 84.3±2.4 86.8±2.1 74.7±4.5 73.9±5.1 91.4±1.5

MinCut achieves state of the art on many graph classification benchmarks (results from [8]).

[8] F. M. Bianchi, D. Grattarola, et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” International Conference on Machine
Learning, 2020.
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Pooling operators - Results

Table 6: Reconstruction MSE (scale of 10−3).

DiffPool MinCut NMF LaPool TopK SAGPool Graclus NDP

Grid2d 0.010 ±0.005 0.002 ±0.002 0.000 ±0.000 0.002 ±0.001 18.86 ±3.923 16.61 ±3.270 0.109 ±0.000 0.000 ±0.000

Ring 0.018 ±0.003 0.001 ±0.000 0.000 ±0.000 0.052 ±0.046 132.2 ±4.133 148.5 ±30.10 0.600 ±0.000 0.000 ±0.000

Bunny 3.901 ±0.275 0.208 ±0.034 0.339 ±0.055 0.610 ±0.103 15.32 ±3.557 16.10 ±1.722 0.332 ±0.043 0.373 ±0.070

Airplane 0.094 ±0.022 0.005 ±0.002 0.020 ±0.000 0.002 ±0.000 0.096 ±0.028 0.268 ±0.081 0.009 ±0.000 0.012 ±0.000

Car 0.143 ±0.127 0.535 ±0.200 0.016 ±0.001 OOR 0.229 ±0.023 0.204 ±0.029 0.102 ±0.000 0.009 ±0.000

Guitar 0.101 ±0.025 0.313 ±0.000 0.007 ±0.000 OOR 0.056 ±0.051 0.060 ±0.044 0.010 ±0.000 0.005 ±0.000

Person 0.077 ±0.041 0.301 ±0.000 0.001 ±0.000 OOR 0.055 ±0.012 0.062 ±0.033 0.001 ±0.000 0.001 ±0.000

NDP works better for geometric data, where regular subsampling is desirable (results from [6]).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.
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Pooling operators - Results

NDP works better for geometric data, where regular subsampling is desirable (results from [6]).

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.
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Architectures

• Non-Euclidean Autoencoders

• Explainable GNNs

• Auto-regressive GNNs
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Non-Euclidean Autoencoders



Non-Euclidean Autoencoders [17]

Goal: represent graphs on a non-Euclidean
manifold with constant curvature (CCM).
How: adversarial AE with non-Euclidean prior.

Input [0, 1]

R
eL
U

Dense decoder

Discriminator 

R
eL
U

R
eL
U

R
eL
U

R
eL
U

R
eL
U

Â 

X ̂ 

Ê 

A

X

E

Po
ol
in
g

Graph
conv.

(θ)Pκ


κ

ℝ
d+1

min
fenc

max
fdis

Ez∼p(z) [log fdis(z)] + Ex∼pdata(x) [log(1 − (fdis ◦ fenc)(x)] .

[17] D. Grattarola et al., “Adversarial autoencoders with constant-curvature latent manifolds,” Applied Soft Computing, 2019.

21



Change detection on CCMs [18]

Hugging Punching

0

2

4

6

8
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S w

= 1
Threshold hw

Change point 

0
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10

15

S w

= 0

0 10000 20000 30000 40000 50000
Timestep

0

10

20

30

40

S w

= 1

[18] D. Grattarola et al., “Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds,” IEEE Transactions
on Neural Networks and Learning Systems, 2019.
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Explainable GNNs

Make GNN explainable by introducing attention in the readout operation:

z = Attn-RO(h) =
N∑
j=1

αjhj , where αj =
exp (hj · a)∑N

k=1 exp (hk · a)
,

23



Explainable GNNs for seizure localization [19]

Idea: use attention scores to identify the brain areas where seizures originate.

[19] D. Grattarola et al., “Unsupervised seizure localisation with attention-based graph neural networks,” Under review at IEEE TBME, 2021.
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Seizure localization - Results
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Known seizure onset zone: GNN shows strong correlation with clinical diagnosis.
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Seizure localization - Results

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(a) Unknown SOZ

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(b) Unknown SOZ

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(c) Known SOZ

Unknown seizure onset zone: GNN also shows uncertainty.
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Auto-regressive GNNs [20]

Goal: predict the next observation of a graph-valued dynamical system.

[20] D. Zambon et al., “Autoregressive Models for Sequences of Graphs,” International Joint Conference on Neural Networks, 2019.
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Autoregressive GNNs

Traditional AR model Graph AR model

f : Rp×d → Rd

ϕ : Gp → G

xt+1 = f (xt , xt−1, . . . , xt−p+1) + ϵ

Gt+1 = H(ϕ(Gt , . . . ,Gt−p+1), η)

E[ϵi ] = 0

ϕ(Gt , . . . ,Gt−p+1) ∈ Ef
η[H(ϕ(Gt , . . . ,Gt−p+1), η)]

Var [ϵi ] = σ2 < ∞

Var f [η] < ∞

Where:

Ef [G] = arg min
G′∈G

∫
G

d (G,G′)
2
dQ (G)

Var f [G] := min
G′∈G

∫
G

d (G,G′)
2
dQ (G)
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Auto-regressive GNN

Input
Window of observations up to time t.

Graph embedding
GNN block applied in parallel to each graph.

Predictor
RNN predicts the graph embedding at t + 1.

Graph decoder
Maps the predicted embedding to the predicted
graph.
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Auto-regressive GNNs - Results

Figure 4: Distance b/w predicted and true graphs. Figure 5: Loss v. complexity of the problem.
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Spektral



Spektral

Spektral

Python library for GNNs:

• TensorFlow/Keras

• 25+ layers for convolution and pooling

• Easy to use, flexible, fast

• Almost 2000 ★ on github.com

Website: graphneural.network
Featured on IEEE Computational Intelligence Magazine [21].

[21] D. Grattarola et al., “Graph neural networks in Tensorflow and Keras with Spektral,” IEEE Computational Intelligence Magazine, 2021.
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Backup



Convolutional operators



History

• 1997: first GNN (works only for DAGs) [22]

• 2005: first use of the term "GNN" [23]

• 2009: improved version of 2005 paper [24]

• 2013: First GCN [25]

• 2016: Geometric Deep Learning [26]

[22] A. Sperduti et al., “Supervised neural networks for the classification of structures,” IEEE Transactions on Neural Networks, vol. 8, no. 3, 1997.

[23] M. Gori et al., “A new model for learning in graph domains,” vol. 2, 2005.

[24] F. Scarselli et al., “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, 2009.

[25] J. Bruna et al., “Spectral networks and locally connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[26] M. M. Bronstein et al., “Geometric deep learning: going beyond euclidean data,” IEEE Signal Processing Magazine, vol. 34, no. 4, 2017.
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Graph-level v. node-level

Graph-level learning.
(e.g., molecules)

Node-level learning.
(e.g., social networks)
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Powers of R

Let’s consider the effect of applying R2 to X:

(RRX)i =
∑

j∈N (i)

rij(RX)j =
∑

j∈N (i)

∑
k∈N (j)

rij · rjk · xk

Key idea: by applying RK we read from the K -th
order neighbourhood of a node.
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Message Passing Neural Networks [27]

x1

x2 x3

x4

e21 e31

e41

Graph.

m1

m21 m31

m41

e21 e31

e41

Messages.

x′1

m21 m31

m41

e21 e31

e41

Propagation.

[27] J. Gilmer et al., “Neural message passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.
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Message Passing Neural Networks [27]

A general scheme for message-passing networks:

x′i = γ
(
xi ,□j∈N (i) ϕ (xi , xj , eji )

)
,

• ϕ: message function, depends on xi , xj and possibly the
edge attribute eji (we call messages mji );

• □j∈N (i): aggregation function (sum, average, max, or
something else...);

• γ: update function, final transformation to obtain new
attributes after aggregating messages.

x′1

m21 m31

m41

e21 e31

e41

[27] J. Gilmer et al., “Neural message passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.
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Chebyshev Polynomials [2]

A recursive definition using Chebyshev polynomials:

T(0) = I

T(1) = L̃

T(k) = 2 · L̃ · T(k−1) − T(k−2)

Where L̃ =
2Ln

λmax
− I and Ln = I − D−1/2AD−1/2

Layer: X′ = σ
( K∑

k=0
T(k)XΘ(k)

)
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
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T(n
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[2] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” Advances in Neural Information Processing
Systems, 2016.
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Graph Convolutional Networks [3]

Polynomial of order K → K layers of order 1;

Three simplifications:

1. λmax = 2 → L̃ =
2Ln

λmax
− I = −D−1/2AD−1/2 = −An

2. K = 1 → X′ = XΘ(0) − AnXΘ(1)

3. Θ = Θ(0) = −Θ(1)

Layer: X′ = σ
(
(I + An︸ ︷︷ ︸

Ã

)XΘ
)
= σ

(
ÃXΘ

)
For stability: Ã = D−1/2(I + A)D−1/2

x1

x2 x3

x4

ã12 ã13

ã14

[3] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convolutional Networks,” International Conference on Learning Representations
(ICLR), 2017.
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Edge-Conditioned Convolution [28]

Key idea: incorporate edge attributes into the messages.

Consider a MLP ϕ : RS → RFF ′
called a filter

generating network:

Θ(ji) = reshape(ϕ(eji ))

Use the edge-dependent weights to compute messages:

x′i = Θ(i)xi +
∑

j∈N (i)

Θ(ji)xj + b

m1

m21 m31

m41

e21 e31

e41

[28] M. Simonovsky et al., “Dynamic edgeconditioned filters in convolutional neural networks on graphs,” 2017.
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Graph Convolution



Discrete Convolution

1 2 3 4 5 6 1 0 1 4 6 8 10* =
Recall: CNNs compute a discrete
convolution

(f ⋆ g)[n] =
M∑

m=−M

f [n −m]g [m] (1)
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Convolution Theorem

Given two functions f and g , their convolution f ⋆ g can be expressed as:

f ⋆ g = F−1 {F {f } · F {g}} (2)

Where F is the Fourier transform and F−1 its inverse.
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What is the Fourier transform?

Key intuition – we are representing a function in a different basis.

F{f }[k] = f̂ [k] =
N−1∑
n=0

f [n]e−i 2π
N kn

F−1{f̂ }[n] = f [n] =
1
N

N−1∑
k=0

f̂ [k]e i
2π
N kn

= + +
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From FT to GFT

The eigenvectors of the Laplacian for a path graph can
be obtained analytically:

uk [n] =


1, for k = 0

e iπ(k+1)n/N , for odd k , k < N − 1

e−iπkn/N , for even k , k > 0

cos(πn), for odd k , k = N − 1

Looks familiar?

5 10 15 20

u 1

5 10 15 20

u 2

5 10 15 20

u 4
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From FT to GFT

Convolution

Fourier
Transform

Path Graph

Laplacian

Fourier
Eigenbasis

• Drop the “grid” assumption

• Replace e−i 2π
N kn with generic uk [n]:

FG {f } [k] =
N−1∑
n=0

f [n]uk [n]

• GFT: FG{f } = f̂ = U⊤f ;

• IGFT: F−1
G {f̂ } = f = Uf̂
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Graph Convolution

Recall:

• Convolution theorem: f ⋆ g = F−1 {F {f } · F {g}}

• Spectral theorem: L = UΛU⊤ =
N−1∑
i=0

λiuiu⊤i

Graph signals:
f , g

GFT:
U⊤f ,U⊤g

Multiply: 1

U⊤f ⊙ U⊤g

IGFT:
U
(
U⊤f ⊙ U⊤g

)

Graph filter: U
(
U⊤f ⊙ U⊤g

)
= U · diag(U⊤g)︸ ︷︷ ︸

g(Λ)

·U⊤f = U · g(Λ) · U⊤︸ ︷︷ ︸
g(L)

f = g(L)f

1⊙ indicates element-wise multiplication
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Pooling operators



Pooling in CNNs
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Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }
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Select, Reduce, Connect [6]

Putting everything together:

S = {Sk}k=1:K = Sel(G);︸ ︷︷ ︸
Selection

X ′ = {Red(G,Sk)}k=1:K ;︸ ︷︷ ︸
Reduction

E ′ = {Con(G,Sk ,Sl)}k,l=1:K ;︸ ︷︷ ︸
Connection

2

1

[6] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” Under review at IEEE TNNLS, 2021.
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Mincut vs. Maxcut

MinCut MaxCut
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Spectral clustering [30]

The low-frequency eigenvectors naturally
cluster the nodes.

5 10 15 20

u 1

Idea: run k-means clustering (or similar) using
the first few eigenvectors.

[29] J. Shi et al., “Normalized cuts and image segmentation,” Departmental Papers (CIS), 2000.

[30] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, no. 4, 2007.
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MinCut pooling

(a) SC (b) DiffPool (c) MinCut

(d) SC (e) DiffPool (f) MinCut

(a) Original (b) SC

(c) DiffPool (d) MinCut
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Node decimation [13]

Alternative: use the highest-frequency
eigenvector to do something similar to a regular
subsampling.

5 10 15 20

u 1
9

[31] L. Palagi et al., “Computational approaches to max-cut,” 2012.

[13] F. M. Bianchi et al., “Hierarchical representation learning in graph neural networks with node decimation pooling,” IEEE Transactions on Neural
Networks and Learning Systems, 2020. 60



Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.

• DiffPool [7]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [8]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [32]: combine Mapper [33] and GCN
[3] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[7] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” arXiv preprint arXiv:1806.08804, 2018.

[8] F. M. Bianchi et al., “Spectral Clustering with Graph Neural Networks for Graph Pooling,” International Conference on Machine Learning, 2020.

[32] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” arXiv preprint arXiv:2002.03864, 2020.
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Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K
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Top-K methods

Reduce: X′ = Xi - Connect: A′ = Ai,i

Problems:

• Top-k selection is non-differentiable (no way of training ϕ).
Solved by gating (multiplying) the node attributes with the
scores.

• Graph is likely to be disconnected or simply cut off (like in
the image on the right).
Not really solvable...

Original

Top-K
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Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;

• Fixed vs. Adaptive: how many supernodes does the selection compute;

• Trainable vs. Non-trainable: learn to pool from data or not;
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Global Pooling

In CNNs, after convolution, we usually flatten
out the images to give a vector as input to a
MLP:

7
4
1

8
5
2

9
6
3

1 2 3 4 5 6 7 8 9

The graph equivalent must be invariant to
permutations of the nodes:
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More results



Molecule generation [17]

Figure 8: Valid, novel, and unique molecules

[17] D. Grattarola et al., “Adversarial autoencoders with constant-curvature latent manifolds,” Applied Soft Computing, 2019.
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