
Pooling in Graph Neural Networks

Daniele Grattarola
Advanced Machine Learning (COMP7950), University of Manitoba



Pooling in CNNs

1



Pooling in CNNs

1



Pooling in CNNs

1



Pooling in CNNs

1



Pooling in CNNs

1



Pooling in CNNs

1



Pooling in CNNs

1



Pooling in CNNs

1



Roadmap

Things we are going to cover:

• A “message passing” for pooling
• Methods
• Global pooling
• Open questions

Source: “Understanding pooling in graph neural networks”, Grattarola et al., 2021
https://arxiv.org/abs/2110.05292

2

https://arxiv.org/abs/2110.05292


Notation

• Graph: nodes connected by edges;
• A, adjacency matrix of shape N× N;
• D = diag([d1, . . . ,dN]), diagonal degree matrix;
• L = D− A, Laplacian matrix;
• X = [x1, . . . , xN]⊤, xi ∈ RF, node attributes or “graph signal”;
• eij ∈ RS, edge attribute for edge i→ j;

x1

x2 x3

x4

e12 e13

e14

3



Graph pooling by example

Strategy 1: aggregate same attributes (Candy Crush pooling).

4



Graph pooling by example

Strategy 2: aggregate cliques.

4



Graph pooling by example

Strategy 3: keep only some types/colors.

4



Three main questions [1]

1. How to identify groups of related nodes?
2. How to get new node attributes from the groups?
3. How to connect the new nodes?

[1] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” 2021 (In preparation).

5



Step 1: Select



Selecting nodes

Example 1: partition.{ } { } { }

Example 2: cover (possible overlaps).{ } { } { }
Example 3: sparse.{ } { } { }

6



Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }

6



Selecting nodes

Example 1: partition.{ } { } { }
Example 2: cover (possible overlaps).{ } { } { }

Example 3: sparse.{ } { } { }

6



Selecting nodes

The selection stage computes K supernodes:

SEL : G 7→ S = {S1, . . . ,SK}.

Each supernode is a set of nodes associated
with a score:

Sk = {(xi, si) | si ∈ R>0} ,

{ } { } { }

S = ∈ RK×N

7



Spectral clustering [3]

The low-frequency eigenvectors naturally
cluster the nodes.

5 10 15 20

u 1

Idea: run k-means clustering (or similar)
using the first few eigenvectors.

[2] J. Shi et al., “Normalized cuts and image segmentation,” 2000.
[3] U. Von Luxburg, “A tutorial on spectral clustering,” 2007.

8



Node decimation [5]

Alternative: use the highest-frequency
eigenvector to do something similar to a
regular subsampling.

5 10 15 20

u 1
9

[4] L. Palagi et al., “Computational approaches to max-cut,” 2012.
[5] F. M. Bianchi et al., Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling, 2019.

9



Some problems

Problems with spectral methods:
• Computing eigenvectors is expensive
(O(N3));

• They do not consider attributes.
But we get the general idea...

10



Step 2: Reduce



Reducing supernodes

The reduction stage aggregates the
supernodes in a permutation-invariant way:

RED : G,Sk 7→ x′k

Typical approach is to take a weighted sum
(weights given by the scores in the
supernodes):

X′ = SX (∈ RK×F)

{ } { } { }

11



Step 3: Connect



Connecting supernodes

The connection function decides whether
two supernodes are connected (and, in case,
computes the associated attributes):

CON : G,Sk,Sl 7→ e′kl

Typical approach is again to take a weighted
sum of edges between two supernodes:

A′ = SAS⊤ (∈ RK×K)

{ } { } { }

a′12 = 2 a′23 = 1

12



Select, Reduce, Connect [1]

Putting everything together:

S = {Sk}k=1:K = SEL(G);︸ ︷︷ ︸
Selection

X ′ = {RED(G,Sk)}k=1:K ;︸ ︷︷ ︸
Reduction

E ′ = {CON(G,Sk,Sl)}k,l=1:K ;︸ ︷︷ ︸
Connection

2

1

[1] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” 2021 (In preparation).

13



Methods



Pooling methods

A few ideas:

1. Graclus [6]: visit nodes randomly, merge pairs that maximize
aij
wi

+
aij
wj
; 1

In [7], they reduce supernodes with element-wise max.

2. Clique Pooling [8]: merge together cliques.
3. LaPool [9]: select “leaders” that have higher local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[6] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[7] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
[8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.

14



Pooling methods

A few ideas:

1. Graclus [6]: visit nodes randomly, merge pairs that maximize
aij
wi

+
aij
wj
; 1

In [7], they reduce supernodes with element-wise max.
2. Clique Pooling [8]: merge together cliques.

3. LaPool [9]: select “leaders” that have higher local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[6] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[7] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
[8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.

14



Pooling methods

A few ideas:

1. Graclus [6]: visit nodes randomly, merge pairs that maximize
aij
wi

+
aij
wj
; 1

In [7], they reduce supernodes with element-wise max.
2. Clique Pooling [8]: merge together cliques.
3. LaPool [9]: select “leaders” that have higher local variation ‖LX‖ w.r.t. all their
neighbors. Create clusters by assigning nodes to nearest leader.

[6] I. S. Dhillon et al., “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
[7] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
[8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.
[9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.

14



Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [10]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [11]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [12]: combine Mapper [13] and GCN
[14] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[10] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018.
[11] F. M. Bianchi et al., “Mincut pooling in Graph Neural Networks,” 2019.
[12] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

15



Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [10]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [11]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [12]: combine Mapper [13] and GCN
[14] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[10] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018.
[11] F. M. Bianchi et al., “Mincut pooling in Graph Neural Networks,” 2019.
[12] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

15



Learning to pool

Key idea: learn to output S⊤ by giving node features X as input
to a neural network.
• DiffPool [10]: GNN for S⊤, regularize with “link prediction”
loss;

• MinCutPool [11]: MLP for S⊤, regularize with “minimum
cut” loss (same objective as spectral clustering);

• Deep Graph Mapper [12]: combine Mapper [13] and GCN
[14] to compute clusters.

ϕ(X) = S⊤ = ∈ RN×K

[10] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018.
[11] F. M. Bianchi et al., “Mincut pooling in Graph Neural Networks,” 2019.
[12] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.

15



MinCut Pooling [11]

• Select: S⊤ = MLP(X)
• Reduce: X′ = SX
• Connect: A′ = SAS⊤

• MinCut loss: Lc = −
Tr(SAS⊤)
Tr(SDS⊤)

• Orthogonality loss:

Lo =
∥∥∥∥ SS⊤

‖SS⊤‖F
−

IK√
K

∥∥∥∥
F

�

� 
�

�
(�+1)

pool

�
(�)

MP MLP�
(�+1)

MP

MinCutPool

�pool

�
(�+1)

pool

� 
�

[11] F. M. Bianchi et al., “Mincut pooling in Graph Neural Networks,” 2019.

16



Top-K methods

Problem: computing S with neural network
is likely to yield a very dense matrix.

Can we learn a sparse selection?

17



Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

18



Top-K methods

X =

Features

ϕ(X) =

Scores

Sorted

Top-K

18



Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

18



Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

18



Top-K methods

X =

Features

ϕ(X) =

Scores Sorted

Top-K

18



Top-K methods

Different ways of computing the selection indices i:

• Select with a simple linear projection θ ∈ RF [15];
• Select with a GNN [16];
• Train the selection with a supervised objective (needs ground truth for which nodes
to keep) [17].

[15] S. J. Hongyang Gao, “Graph U-Net,” 2019.
[16] J. Lee et al., “Self-Attention Graph Pooling,” 2019.
[17] B. Knyazev et al., “Understanding attention in graph neural networks,” 2019.

19



Top-K methods

Reduce: X′ = Xi - Connect: A′ = Ai,i

Problems:
• Top-k selection is non-differentiable (no way of training
ϕ).
Solved by gating (multiplying) the node attributes with
the scores.

• Graph is likely to be disconnected or simply cut off (like
in the image on the right).
Not really solvable...

Original

Top-K

20



Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;

• Fixed vs. Adaptive: how many supernodes does the selection compute;
• Trainable vs. Non-trainable: learn to pool from data or not;

21



Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;
• Fixed vs. Adaptive: how many supernodes does the selection compute;

• Trainable vs. Non-trainable: learn to pool from data or not;

21



Main properties of pooling operators

• Dense vs. Sparse: how many nodes are selected for the supernodes;
• Fixed vs. Adaptive: how many supernodes does the selection compute;
• Trainable vs. Non-trainable: learn to pool from data or not;

21



Global pooling



Global Pooling

In CNNs, after convolution, we usually
flatten out the images to give a vector as
input to a MLP:

7
4
1

8
5
2

9
6
3

1 2 3 4 5 6 7 8 9

The graph equivalent must be invariant to
permutations of the nodes:

22



Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;

• Weighted sum with attention [18];
• Sum and then apply a neural network [19];

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.

23



Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;
• Weighted sum with attention [18];

• Sum and then apply a neural network [19];

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.

23



Global Pooling

Once again, there are many ways to do this:

• Sum, average, product, max;
• Weighted sum with attention [18];
• Sum and then apply a neural network [19];

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.
[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019.

23



Open questions



Open questions

• Does pooling really work?
• Dense selection + message passing + small graphs is a bad idea [20]

• Which tasks benefit from pooling a priori?
• Problems with inherent hierarchy?

• Can we make a pooling layer that is dense, trainable, and adaptive?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.

24



Open questions

• Does pooling really work?
• Dense selection + message passing + small graphs is a bad idea [20]
• Which tasks benefit from pooling a priori?

• Problems with inherent hierarchy?

• Can we make a pooling layer that is dense, trainable, and adaptive?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.

24



Open questions

• Does pooling really work?
• Dense selection + message passing + small graphs is a bad idea [20]
• Which tasks benefit from pooling a priori?
• Problems with inherent hierarchy?

• Can we make a pooling layer that is dense, trainable, and adaptive?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.

24



Open questions

• Does pooling really work?
• Dense selection + message passing + small graphs is a bad idea [20]
• Which tasks benefit from pooling a priori?
• Problems with inherent hierarchy?

• Can we make a pooling layer that is dense, trainable, and adaptive?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.

24



References i

[1] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, “Understanding pooling in
graph neural networks,”, 2021 (In preparation).

[2] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[3] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,
no. 4, pp. 395–416, 2007.

[4] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wiegele, “Computational approaches
to max-cut,” in Handbook on semidefinite, conic and polynomial optimization,
Springer, 2012, pp. 821–847.

[5] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, Hierarchical representation learning
in graph neural networks with node decimation pooling, 2019. arXiv: 1910.11436
[cs.LG].

25

https://arxiv.org/abs/1910.11436
https://arxiv.org/abs/1910.11436


References ii

[6] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigenvectors a
multilevel approach,” IEEE transactions on pattern analysis and machine
intelligence, vol. 29, no. 11, pp. 1944–1957, 2007.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852.

[8] E. Luzhnica, B. Day, and P. Lio, “Clique pooling for graph classification,” International
Conference of Learning Representations (ICLR) – Representation Learning on Graphs
and Manifolds workshop, 2019.

[9] E. Noutahi, D. Beani, J. Horwood, and P. Tossou, “Towards interpretable sparse graph
representation learning with laplacian pooling,” arXiv preprint arXiv:1905.11577, 2019.

26



References iii

[10] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical graph
representation learning with differentiable pooling,” arXiv preprint arXiv:1806.08804,
2018.

[11] F. M. Bianchi, D. Grattarola, and C. Alippi, “Mincut pooling in graph neural networks,”
CoRR, vol. abs/1907.00481, 2019. arXiv: 1907.00481. [Online]. Available:
http://arxiv.org/abs/1907.00481.

[12] C. Bodnar, C. Cangea, and P. Liò, “Deep graph mapper: Seeing graphs through the
neural lens,” arXiv preprint arXiv:2002.03864, 2020.

[13] G. Singh, F. Mémoli, and G. E. Carlsson, “Topological methods for the analysis of high
dimensional data sets and 3d object recognition.,” in SPBG, 2007, pp. 91–100.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations (ICLR), 2016.

27

https://arxiv.org/abs/1907.00481
http://arxiv.org/abs/1907.00481


References iv

[15] S. J. Hongyang Gao, “Graph u-net,” Submitted to ICLR, 2019.

[16] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” arXiv preprint
arXiv:1904.08082, 2019.

[17] B. Knyazev, G. W. Taylor, and M. R. Amer, “Understanding attention in graph neural
networks,” CoRR, vol. abs/1905.02850, 2019. arXiv: 1905.02850. [Online]. Available:
http://arxiv.org/abs/1905.02850.

[18] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” arXiv preprint arXiv:1511.05493, 2015.

[19] N. Navarin, D. Van Tran, and A. Sperduti, “Universal readout for graph convolutional
neural networks,” in 2019 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2019, pp. 1–7.

28

https://arxiv.org/abs/1905.02850
http://arxiv.org/abs/1905.02850


References v

[20] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph neural networks,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

29


	Step 1: Select
	Step 2: Reduce
	Step 3: Connect
	Methods
	Global pooling
	Open questions

