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Things we are going to cover:

- A “message passing” for pooling
- Methods

- Global pooling

- Open questions

Source: “Understanding pooling in graph neural networks”, Grattarola et al., 2021
https://arxiv.org/abs/2110.05292


https://arxiv.org/abs/2110.05292

- Graph: nodes connected by edges; @
- A, adjacency matrix of shape N x N;

- D =diag([d,...,dn]), diagonal degree matrix;
- L=D — A Laplacian matrix;

« X=[xq,...,xn] ", X; € RF, node attributes or “graph signal’; e e
- e € R°, edge attribute for edge i — j; @ \@



Graph pooling by example

Strategy 1: aggregate same attributes (Candy Crush pooling).




Graph pooling by example

Strategy 2: aggregate cliques.




Graph pooling by example

Strategy 3: keep only some types/colors.
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Three main questions [1]

1. How to identify groups of related nodes?
2. How to get new node attributes from the groups?
3. How to connect the new nodes?

[1] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” 2021 (In preparation).



Step 1: Select




Selecting nodes

Example 1: partition.
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Selecting nodes

Example 1: partition.
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Example 2: cover (possible overlaps).
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Selecting nodes

Example 1: partition.
(@@ 0} {000} {O}
Example 2: cover (possible overlaps).

(@000} {000} {00}

Example 3: sparse.

1@} {0} {0}



Selecting nodes

The selection stage computes K supernodes:

(@00} {000} {0}

SELZQHS:{S1,...7SK}.

Each supernode is a set of nodes associated
with a score: S — c RKXN

Sk ={(x,si) | si € Rxo},



Spectral clustering [3]

[2] ). Shi et al., “Normalized cuts and image segmentation,” 2000.

[3] U. Von Luxburg, “A tutorial on spectral clustering,” 2007.

The low-frequency eigenvectors naturally
cluster the nodes.

|
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Idea: run k-means clustering (or similar)
using the first few eigenvectors.



Node decimation [5]

Alternative: use the highest-frequency
eigenvector to do something similar to a
regular subsampling.

uig

[4] L. Palagi et al., “Computational approaches to max-cut,’ 2012

[5] F. M. Bianchi et al., Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling, 2019.



Some problems

Problems with spectral methods:
- Computing eigenvectors is expensive
(O(N?));
- They do not consider attributes.
But we get the general idea...




Step 2: Reduce




Reducing supernodes

The reduction stage aggregates the
supernodes in a permutation-invariant way:

RED : G, Sk — Xj,

(@00} {00@} {0}

Typical approach is to take a weighted sum oy oy - " Y
(weights given by the scores in the U @ O
supernodes):

X' =SX (€ RKF)

1



Step 3: Connect




Connecting supernodes

The connection function decides whether
two supernodes are connected (and, in case,
computes the associated attributes):

CON : Q,Sk,Sl — e;?[

o o _ 0

Typical approach is again to take a weighted I al, =1
sum of edges between two supernodes: 2

A =SAST (e R



Select, Reduce, Connect [1]

Putting everything together:

S = {Sptprk = SEL(9);

Selection
X' = {ReD(G, Sk) }orks
Reduction
E" = {CON(G, Sk, S) Y =1k s
Connection

[1] D. Grattarola et al., “Understanding Pooling in Graph Neural Networks,” 2021 (In preparation).



Methods




Pooling methods

A few ideas:
N . LA @y
1. Graclus [6]: visit nodes randomly, merge pairs that maximize R
i J
n [7], they reduce supernodes with element-wise max.

6] 1. S. Dhillon et al, “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
7] M. Defferrard et al.,, “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.

8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.

[
[
(8]
[9]

9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling," 2019.
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In [7], they reduce supernodes with element-wise max.

2. Clique Pooling [8]: merge together cliques.
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8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.

[
[
(8]
[9]

9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling," 2019.

14



Pooling methods

A few ideas:

aj 4

’

- . - i
1. Graclus [6]: visit nodes randomly, merge pairs that maximize W”Jr "
i J
In [7], they reduce supernodes with element-wise max.

2. Clique Pooling [8]: merge together cliques.

3. LaPool [9]: select “leaders” that have higher local variation ||LX]|| w.rt. all their
neighbors. Create clusters by assigning nodes to nearest leader.

6] 1. S. Dhillon et al, “Weighted graph cuts without eigenvectors a multilevel approach,” 2007.
7] M. Defferrard et al.,, “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.
8] E. Luzhnica et al., “Clique pooling for graph classification,” 2019.

[
[
[
[9] E. Noutahi et al., “Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling,” 2019.
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Learning to pool

Key idea: learn to output ST by giving node features X as input
to a neural network.
- DiffPool [10]: GNN for ST, regularize with “link prediction”
loss;

o(X)=ST = € RI

[10] R. Ying et al, “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018
[11] F. M. Bianchi et al,, “Mincut pooling in Graph Neural Networks,” 2019.
[12] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.
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Learning to pool

Key idea: learn to output ST by giving node features X as input
to a neural network.
- DiffPool [10]: GNN for ST, regularize with “link prediction”
loss;

o(X)=ST = € RI

- MinCutPool [11]: MLP for ST, regularize with “minimum
cut” loss (same objective as spectral clustering);

- Deep Graph Mapper [12]: combine Mapper [13] and GCN
[14] to compute clusters.

[10] R. Ying et al, “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018
[11] F. M. Bianchi et al,, “Mincut pooling in Graph Neural Networks,” 2019.
[12] C. Bodnar et al., “Deep Graph Mapper: Seeing Graphs through the Neural Lens,” 2020.



MinCut Pooling [11]

- Select: ST = MLP(X)

- Reduce: X' = SX I____) XD
- Connect: A’ = SAST 0 R
. TI’(SAST) X X MLP S =—=>L, :E|
- MinCut loss: L. = —W Ai | A
- Orthogonality loss: " > "
SST II< MinCutPool
O

[11] F. M. Bianchi et al,, “Mincut pooling in Graph Neural Networks,” 2019,



Problem: computing S with neural network
is likely to yield a very dense matrix.

Can we learn a sparse selection?




Features



Features Scores



N |

Sy

X = oX) = Bl . el
L ,_‘7

Features Scores Sorted
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Different ways of computing the selection indices i:

- Select with a simple linear projection 6 € RF [15];
- Select with a GNN [16];

- Train the selection with a supervised objective (needs ground truth for which nodes
to keep) [17].

[15] S. J. Hongyang Gao, “Graph U-Net," 2019.
[16] ). Lee et al,, “Self-Attention Graph Pooling,” 2019.
[17] B. Knyazev et al,, “Understanding attention in graph neural networks,” 2019.
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Original
*EH:}
Reduce: X' = X; - Connect: A" = A; ’[}
Problems:
- Top-k selection is non-differentiable (no way of training
).
Solved by gating (multiplying) the node attributes with Top-K
the scores.

- Graph is likely to be disconnected or simply cut off (like T
in the image on the right).
Not really solvable...

20



Main properties of pooling operators

- Dense vs. Sparse: how many nodes are selected for the supernodes;

21



Main properties of pooling operators

- Dense vs. Sparse: how many nodes are selected for the supernodes;
- Fixed vs. Adaptive: how many supernodes does the selection compute;
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Main properties of pooling operators

- Dense vs. Sparse: how many nodes are selected for the supernodes;
- Fixed vs. Adaptive: how many supernodes does the selection compute;

- Trainable vs. Non-trainable: learn to pool from data or not;

21



Global pooling




Global Pooling

The graph equivalent must be invariant to
permutations of the nodes:

In CNNs, after convolution, we usually
flatten out the images to give a vector as
input to a MLP:

7189 [1]2]|3]|4]5]6]7]8]9]

22



Global Pooling

Once again, there are many ways to do this:

- Sum, average, product, max;

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.

[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019,
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Global Pooling

Once again, there are many ways to do this:

- Sum, average, product, max;
- Weighted sum with attention [18];

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.

[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019,
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Global Pooling

Once again, there are many ways to do this:

- Sum, average, product, max;
- Weighted sum with attention [18];
- Sum and then apply a neural network [19];

[18] Y. Li et al., “Gated graph sequence neural networks,” 2015.

[19] N. Navarin et al., “Universal readout for graph convolutional neural networks,” 2019,
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Open questions




Open questions

- Does pooling really work?
- Dense selection + message passing + small graphs is a bad idea [20]

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.
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Open questions

- Does pooling really work?

- Dense selection + message passing + small graphs is a bad idea [20]
- Which tasks benefit from pooling a priori?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.

24



Open questions

- Does pooling really work?
- Dense selection + message passing + small graphs is a bad idea [20]
- Which tasks benefit from pooling a priori?
- Problems with inherent hierarchy?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.
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Open questions

- Does pooling really work?

- Dense selection + message passing + small graphs is a bad idea [20]
- Which tasks benefit from pooling a priori?
- Problems with inherent hierarchy?

- Can we make a pooling layer that is dense, trainable, and adaptive?

[20] D. Mesquita et al., “Rethinking pooling in graph neural networks,” 2020.
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