

Generative Adversarial Networks

Advanced Topics in Machine Learning

Andrea Cini, Daniele Zambon, Daniele Grattarola, Prof. Cesare Alippi

USI

Which photo is real?

1

Which photo is real?

this person does not exist.com

L

Generative Adversarial Networks [1] in short

Goal: generate samples that **look like** the real data.

^[1] I. J. Goodfellow et al., Generative Adversarial Networks, 2014.

Generative Adversarial Networks [1] in short

Goal: generate samples that **look like** the real data.

Two main **neural networks**:

- **Generator** G(z) maps random noise z to the data space;
- **Discriminator** $D(\mathbf{x})$ decides whether sample \mathbf{x} was generated by G or is a real sample;

^[1] I. J. Goodfellow et al., Generative Adversarial Networks, 2014.

Generative Adversarial Networks [1] in short

Goal: generate samples that **look like** the real data.

Two main **neural networks**:

- **Generator** G(z) maps random noise z to the data space;
- Discriminator D(x) decides whether sample x was generated by G or is a real sample;

The two components play against each other until the generator fools the discriminator.

Adversarial

^[1] I. J. Goodfellow et al., Generative Adversarial Networks, 2014.

Generative Adversarial Networks in short

Different types of neural networks can be used as **generator**:

- Convolutional for images or audio;
- Recurrent for text or sequences;
- MLPs for tabular data;

Different types of neural networks can be used as **generator**:

- ullet Convolutional for images or audio; \leftarrow we focus mostly on these (easier to visualize)
- Recurrent for text or sequences;
- MLPs for tabular data;

Generates an image of w by h pixels $\mathbf{x} = G(\mathbf{z}) \in [0,1]^{w \times h}$, where $\mathbf{z} \sim p_z(\mathbf{z})$ (e.g., $\mathcal{N}(0,1)$).

Generates an image of w by h pixels $\mathbf{x} = G(\mathbf{z}) \in [0,1]^{w \times h}$, where $\mathbf{z} \sim p_z(\mathbf{z})$ (e.g., $\mathcal{N}(0,1)$).

(this cat does not exist.com)

Discriminator

The **discriminator** looks at samples from the data space $\mathbf{x} \in [0,1]^{w \times h}$ and outputs:

- 1 if the samples come from the real data distribution, i.e., $\mathbf{x} \sim p^*(\mathbf{x})$;
- 0 if the samples are **fake**, *i.e.*, $\mathbf{x} \sim p_g(\mathbf{x})$ (first $\mathbf{z} \sim p_z(\mathbf{z})$, then $\mathbf{x} = G(\mathbf{z})$);

Discriminator

The **discriminator** is trained to optimise two objectives:

- $\max_{D} \underset{\mathbf{x} \sim p^*(\mathbf{x})}{\mathbb{E}} [\log D(\mathbf{x})]$ (output 1 on real samples)
- $\max_{D} \underset{\mathbf{z} \sim p_z(\mathbf{z})}{\mathbb{E}} [\log (1 D(G(\mathbf{z})))]$ (output 0 on **generated** samples)

(this is just a different way to write a binary classification problem)

Training the generator

Recall: the **generator** has to fool the **discriminator**.

$$\underbrace{\frac{\max \sum\limits_{\boldsymbol{Z} \sim \rho_z(\boldsymbol{z})} \mathbb{E}\left[\log\left(1 - D(\boldsymbol{G}(\boldsymbol{z}))\right)\right]}_{\text{Discriminator objective}}}$$

Training the generator

Recall: the **generator** has to fool the **discriminator**.

$$\underbrace{\frac{\max}{D} \underset{\mathbf{z} \sim p_z(\mathbf{z})}{\mathbb{E}} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right]}_{\text{Discriminator objective}} \rightarrow \underbrace{\min_{G} \underset{\mathbf{z} \sim p_z(\mathbf{z})}{\mathbb{E}} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right]}_{\text{Generator objective}}$$

Fooling = making the **discriminator** output 1 on generated samples.

Putting everything together

If we combine the two objectives for G(z) and D(x) we get the GAN min-max game:

$$\min_{G} \max_{D} \underset{\mathbf{x} \sim p^*(\mathbf{x})}{\mathbb{E}} \left[\log D(\mathbf{x}) \right] + \underset{\mathbf{z} \sim p_z(\mathbf{z})}{\mathbb{E}} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right]$$

Training the GAN

The GAN is trained by an iterative procedure, repeated to convergence:

- 1. Train the discriminator on a batch of real and fake samples;
- 2. Train the **generator** to fool the discriminator.

Training the GAN - Discriminator training

For *k* steps do:

- 1. Sample a minibatch of noise samples $\{\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(m)}\}$ from $p_z(\mathbf{z})$;
- 2. Sample a minibatch of real samples from the dataset $\{\mathbf{x}^{(1)},\dots,\mathbf{x}^{(m)}\}$;
- 3. Update the weights θ_D of D by gradient **ascent**:¹

$$\nabla_{\theta_D} \frac{1}{m} \sum_{i=1}^m \left[\log D(\mathbf{x}^{(i)}) + \log \left((1 - D(G(\mathbf{z}^{(i)})) \right) \right].$$

¹In practice we can also do gradient descent by changing the sign.

Training the GAN - Generator training

Do once:

- 1. Sample a minibatch of noise samples $\{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}\}$ from $p_z(\mathbf{z})$;
- 2. Update the weights θ_G of G by gradient **descent**:

$$\nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m \log \left((1 - D(G(\mathbf{z}^{(i)})) \right).$$

The min-max game goes on until G perfectly fools D.

The min-max game goes on until G perfectly fools D.

When this happens:

- The data distribution is **indistinguishable** from the distribution of the generated data: $p^* = p_g$.
- The global minimum of the training criterion is:

$$\mathbb{E}_{\mathbf{x} \sim p^*(\mathbf{x})} \left[\underbrace{\log D(\mathbf{x})}_{\log(0.5)} \right] + \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})} \left[\underbrace{\log (1 - D(G(\mathbf{z})))}_{\log(0.5)} \right] = \log(0.25)$$

13

The min-max game goes on until G perfectly fools D.

When this happens:

- The data distribution is **indistinguishable** from the distribution of the generated data: $p^* = p_g$.
- The global minimum of the training criterion is:

$$\mathbb{E}_{\mathbf{x} \sim p^*(\mathbf{x})} \left[\underbrace{\log D(\mathbf{x})}_{\log(0.5)} \right] + \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})} \left[\underbrace{\log (1 - D(G(\mathbf{z})))}_{\log(0.5)} \right] = \log(0.25)$$

i.e., the discriminator is maximally confused (can only output 0.5).

The min-max game goes on until G perfectly fools D.

When this happens:

- The data distribution is **indistinguishable** from the distribution of the generated data: $p^* = p_g$.
- The global minimum of the training criterion is:

$$\mathbb{E}_{\mathbf{x} \sim p^*(\mathbf{x})} \left[\underbrace{\log D(\mathbf{x})}_{\log(0.5)} \right] + \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})} \left[\underbrace{\log (1 - D(G(\mathbf{z})))}_{\log(0.5)} \right] = \log(0.25)$$

i.e., the discriminator is maximally confused (can only output 0.5).

Note: convergence is guaranteed given sufficient capacity of the neural networks.

13

• Use **non-saturating** loss to optimize *G*:

$$\nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m -\log D(G(\mathbf{z}^{(i)}));$$

• Use **non-saturating** loss to optimize *G*:

$$\nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m -\log D(G(\mathbf{z}^{(i)}));$$

Avoid sparse gradients: use LeakyReLU, average pooling.

• Use **non-saturating** loss to optimize *G*:

$$\nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m -\log D(G(\mathbf{z}^{(i)}));$$

- Avoid sparse gradients: use LeakyReLU, average pooling.
- **Do not mix** real and fake samples to train *D*;

• Use **non-saturating** loss to optimize G:

$$\nabla_{\theta_G} \frac{1}{m} \sum_{i=1}^m -\log D(G(\mathbf{z}^{(i)}));$$

- Avoid sparse gradients: use LeakyReLU, average pooling.
- **Do not mix** real and fake samples to train *D*;
- Check out github.com/soumith/ganhacks for more dark magic empirical tips.

Conditional GANs

In many cases, the samples from p^* are divided in classes (e.g., ImageNet).

Instead of generating any image from p^* , we generate $\mathbf{x} = G(\mathbf{z}, y)$, where y is a class label.

Applications

Text to image translation [2]

Stage-I images

Stage-II images

^[2] S. Reed et al., "Generative adversarial text to image synthesis," 2016.

Style transfer [3]

[3] T. Karras et al., "A Style-Based Generator Architecture for Generative Adversarial Networks," 2018.

Style transfer [4]

^[4] G. Antipov et al., "Face aging with conditional generative adversarial networks," 2017.

Super-resolution [5]

^[5] C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network," 2016.

Demo

cutt.ly/sfO5CU9

References i

- [1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, *Generative adversarial networks*, 2014. arXiv: 1406.2661 [stat.ML].
- [2] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, "Generative adversarial text to image synthesis," *arXiv preprint arXiv:1605.05396*, 2016.
- [3] T. Karras, S. Laine, and T. Aila, "A style-based generator architecture for generative adversarial networks," in *CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018, pp. 4396–4405.
- [4] G. Antipov, M. Baccouche, and J.-L. Dugelay, "Face aging with conditional generative adversarial networks," in 2017 IEEE international conference on image processing (ICIP), IEEE, 2017, pp. 2089–2093.

References ii

[5] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, and Z. Wang, "Photo-realistic single image super-resolution using a generative adversarial network," arXiv preprint arXiv:1609.04802, 2016.