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Generative Adversarial Networks [1] in short

Goal: generate samples that look like the real data.

Two main neural networks:

• Generator G (z) maps random noise z to the data space;

• Discriminator D(x) decides whether sample x was generated by G or is a real sample;

The two components play against each other︸ ︷︷ ︸
Adversarial

until the generator fools the discriminator.

[1] I. J. Goodfellow et al., Generative Adversarial Networks, 2014.
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Generative Adversarial Networks in short

Dataset

Fake

Real

Fake/Real?
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Generator

Different types of neural networks can be used as generator:

• Convolutional for images or audio;

← we focus mostly on these (easier to visualize)

• Recurrent for text or sequences;

• MLPs for tabular data;
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Generator

Generates an image of w by h pixels x = G (z) ∈ [0, 1]w×h, where z ∼ pz(z) (e.g., N (0, 1)).

(thiscatdoesnotexist.com)
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Discriminator

The discriminator looks at samples from the data space x ∈ [0, 1]w×h and outputs:

• 1 if the samples come from the real data distribution, i.e., x ∼ p∗(x);

• 0 if the samples are fake, i.e., x ∼ pg (x) (first z ∼ pz(z), then x = G (z));

6



Discriminator

The discriminator is trained to optimise two objectives:

• max
D

E
x∼p∗(x)

[logD(x)] (output 1 on real samples)

• max
D

E
z∼pz (z)

[log (1− D(G (z)))] (output 0 on generated samples)

(this is just a different way to write a binary classification problem)
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Training the generator

Recall: the generator has to fool the discriminator.

max
D

E
z∼pz (z)

[log (1− D(G (z)))]︸ ︷︷ ︸
Discriminator objective

→ min
G

E
z∼pz (z)

[log (1− D(G (z)))]︸ ︷︷ ︸
Generator objective

Fooling = making the discriminator output 1 on generated samples.
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Putting everything together

If we combine the two objectives for G (z) and D(x) we get the GAN min-max game:

min
G

max
D

E
x∼p∗(x)

[logD(x)] + E
z∼pz (z)

[log (1− D(G (z)))]
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Training the GAN

The GAN is trained by an iterative procedure, repeated to convergence:

1. Train the discriminator on a batch of real and fake samples;

2. Train the generator to fool the discriminator.
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Training the GAN - Discriminator training

For k steps do:

1. Sample a minibatch of noise samples {z(1), . . . , z(m)} from pz(z);

2. Sample a minibatch of real samples from the dataset {x(1), . . . , x(m)};
3. Update the weights θD of D by gradient ascent:1

∇θD
1
m

m∑
i=1

[
logD(x(i)) + log

(
(1− D(G (z(i))

)]
.

1In practice we can also do gradient descent by changing the sign.
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Training the GAN - Generator training

Do once:

1. Sample a minibatch of noise samples {z(1), . . . , z(m)} from pz(z);

2. Update the weights θG of G by gradient descent:

∇θG
1
m

m∑
i=1

log
(
(1− D(G (z(i))

)
.

12



Convergence

The min-max game goes on until G perfectly fools D.

When this happens:

• The data distribution is indistinguishable from the distribution of the generated data:
p∗ = pg .

• The global minimum of the training criterion is:

E
x∼p∗(x)

[
logD(x)︸ ︷︷ ︸
log(0.5)

]
+ E

z∼pz (z)

[
log (1− D(G (z)))︸ ︷︷ ︸

log(0.5)

]
= log(0.25)

i.e., the discriminator is maximally confused (can only output 0.5)

.

Note: convergence is guaranteed given sufficient capacity︸ ︷︷ ︸
Difficult to know...

of the neural networks.
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Tips and Tricks

• Use non-saturating loss to optimize G :

∇θG 1
m

m∑
i=1
− logD(G (z(i)));

• Avoid sparse gradients: use LeakyReLU, average
pooling.

• Do not mix real and fake samples to train D;

• Check out github.com/soumith/ganhacks for
more dark magic empirical tips.
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Conditional GANs

In many cases, the samples from p∗ are divided in classes (e.g., ImageNet).

Instead of generating any image from p∗, we generate x = G (z, y), where y is a class label.

...0 0 0 0 1 0 0 0

ImageNet	class	271
Arctic	Wolf
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Applications



Text to image translation [2]

[2] S. Reed et al., “Generative adversarial text to image synthesis,” 2016.
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Style transfer [3]

[3] T. Karras et al., “A Style-Based Generator Architecture for Generative Adversarial Networks,” 2018.
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Style transfer [4]

[4] G. Antipov et al., “Face aging with conditional generative adversarial networks,” 2017.
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Super-resolution [5]

[5] C. Ledig et al., “Photo-realistic single image super-resolution using a generative adversarial network,” 2016.
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Demo



Demo

cutt.ly/sfO5CU9
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Questions?
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