
Autoregressive Models for Sequences of Graphs

IJCNN 2019

Daniele Zambon∗†, Daniele Grattarola ∗†, Lorenzo Livi ‡, Cesare Alippi †§

∗ Equal contribution
† Università della Svizzera italiana
‡ University of Manitoba & University of Exeter
§ Politecnico di Milano

Sequences of graphs

A graph of N nodes is a tuple g = (V, E) ∈ G s.t.:

V = {vi ∈ RF}i=1,...,N E = {eij ∈ RS}vi ,vj∈V

A graph stochastic process (GSP) is a sequence of random variables {gt ∈ G}t=0,...,T

1

Sequences of graphs

A graph of N nodes is a tuple g = (V, E) ∈ G s.t.:

V = {vi ∈ RF}i=1,...,N E = {eij ∈ RS}vi ,vj∈V

A graph stochastic process (GSP) is a sequence of random variables {gt ∈ G}t=0,...,T

1

Sequences of graphs

A graph of N nodes is a tuple g = (V, E) ∈ G s.t.:

V = {vi ∈ RF}i=1,...,N E = {eij ∈ RS}vi ,vj∈V

A graph stochastic process (GSP) is a sequence of random variables {gt ∈ G}t=0,...,T

1

Problem formulation: graph autoregression

Traditional AR model Graph AR model

f : Rp×d → Rd

φ : Gp → G

xt+1 = f (xp
t) + ε

gt+1 = H(φ(gp
t), η)

f (xp
t) = E[f (xp

t) + ε]

φ(gp
t) ∈ Ef

η[H(φ(gp
t), η)]

Var[ε] = σ2 <∞

Varf [η] <∞

Where:

Ef [g] := argmin
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

Varf [g] := min
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

2

Problem formulation: graph autoregression

Traditional AR model Graph AR model

f : Rp×d → Rd φ : Gp → G

xt+1 = f (xp
t) + ε

gt+1 = H(φ(gp
t), η)

f (xp
t) = E[f (xp

t) + ε]

φ(gp
t) ∈ Ef

η[H(φ(gp
t), η)]

Var[ε] = σ2 <∞

Varf [η] <∞

Where:

Ef [g] := argmin
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

Varf [g] := min
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

2

Problem formulation: graph autoregression

Traditional AR model Graph AR model

f : Rp×d → Rd φ : Gp → G

xt+1 = f (xp
t) + ε gt+1 = H(φ(gp

t), η)

f (xp
t) = E[f (xp

t) + ε]

φ(gp
t) ∈ Ef

η[H(φ(gp
t), η)]

Var[ε] = σ2 <∞

Varf [η] <∞

Where:

Ef [g] := argmin
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

Varf [g] := min
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

2

Problem formulation: graph autoregression

Traditional AR model Graph AR model

f : Rp×d → Rd φ : Gp → G

xt+1 = f (xp
t) + ε gt+1 = H(φ(gp

t), η)

f (xp
t) = E[f (xp

t) + ε] φ(gp
t) ∈ Ef

η[H(φ(gp
t), η)]

Var[ε] = σ2 <∞

Varf [η] <∞

Where:

Ef [g] := argmin
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

Varf [g] := min
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

2

Problem formulation: graph autoregression

Traditional AR model Graph AR model

f : Rp×d → Rd φ : Gp → G

xt+1 = f (xp
t) + ε gt+1 = H(φ(gp

t), η)

f (xp
t) = E[f (xp

t) + ε] φ(gp
t) ∈ Ef

η[H(φ(gp
t), η)]

Var[ε] = σ2 <∞ Varf [η] <∞

Where:

Ef [g] := argmin
g ′∈G

∫
G
d(g , g ′)2 dQg (g) Varf [g] := min

g ′∈G

∫
G
d(g , g ′)2 dQg (g)

2

Implementing φ(g p
t)

Graph embedding

φemb(· ; θemb) : G → Rl , applied in parallel to
each graph in the regressor.

Vector prediction

φprd(· ; θprd) : Rk×l → Rl , captures temporal
dynamics in embedding space.

Graph decoder

φdec(· ; θdec) : Rl → G, outputs graph from
predicted vector.

3

Implementing φ(g p
t)

Graph embedding

φemb(· ; θemb) : G → Rl , applied in parallel to
each graph in the regressor.

Vector prediction

φprd(· ; θprd) : Rk×l → Rl , captures temporal
dynamics in embedding space.

Graph decoder

φdec(· ; θdec) : Rl → G, outputs graph from
predicted vector.

3

Implementing φ(g p
t)

Graph embedding

φemb(· ; θemb) : G → Rl , applied in parallel to
each graph in the regressor.

Vector prediction

φprd(· ; θprd) : Rk×l → Rl , captures temporal
dynamics in embedding space.

Graph decoder

φdec(· ; θdec) : Rl → G, outputs graph from
predicted vector.

3

Implementing φ(g p
t)

Graph embedding

φemb(· ; θemb) : G → Rl , applied in parallel to
each graph in the regressor.

Vector prediction

φprd(· ; θprd) : Rk×l → Rl , captures temporal
dynamics in embedding space.

Graph decoder

φdec(· ; θdec) : Rl → G, outputs graph from
predicted vector.

3

Implementing φ(g p
t) with a GNN

4

Experiments: rotational model

Points moving in a 2D plane with delayed
rotations:

f (xp
t) = R(xp

t) · xt

Rn(xp
t) =

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

]

ω = cn + α cos

(
p−1∑
i=0

xt−i,2n−1 + xt−i,2n

)

5

Experiments: Partially Masked Linear Dynamical System (PMLDS)

Given a c-dimensional oscillating linear system:

xt+1 = Rxt

xt ∈ Rc and R ∈ Rc×c

we only observe the top N · F components.
This results in a dynamical system of order
p ∝ (c − N · F) [1].

[1] E. Ott, Chaos in Dynamical Systems, 2002. 6

Baselines

Mean

Assumes GSP is stationary, predicts the mean graph: ĝt+1 = Ef [g].

Martingale
Assumes GSP is a martingale, predicts the previous graph: ĝt+1 = gt .

Moving average
Predicts the mean graph from the k preceding observations:

ĝt+1 = Ef [g k
t] = argmin

g ′

∑
gi∈g k

t

d(g ′, gi)
2.

Vector AR

Graphs are represented as vectors ut = [vec(Vt)>, vec(Et)>]> ∈ RN·F+N2
, and then a linear

autoregressive model is applied:

ût+1 = B0 +
k∑

i=1

Bi · ut−i+1.

7

Baselines

Mean

Assumes GSP is stationary, predicts the mean graph: ĝt+1 = Ef [g].

Martingale
Assumes GSP is a martingale, predicts the previous graph: ĝt+1 = gt .

Moving average
Predicts the mean graph from the k preceding observations:

ĝt+1 = Ef [g k
t] = argmin

g ′

∑
gi∈g k

t

d(g ′, gi)
2.

Vector AR

Graphs are represented as vectors ut = [vec(Vt)>, vec(Et)>]> ∈ RN·F+N2
, and then a linear

autoregressive model is applied:

ût+1 = B0 +
k∑

i=1

Bi · ut−i+1.

7

Baselines

Mean

Assumes GSP is stationary, predicts the mean graph: ĝt+1 = Ef [g].

Martingale
Assumes GSP is a martingale, predicts the previous graph: ĝt+1 = gt .

Moving average
Predicts the mean graph from the k preceding observations:

ĝt+1 = Ef [g k
t] = argmin

g ′

∑
gi∈g k

t

d(g ′, gi)
2.

Vector AR

Graphs are represented as vectors ut = [vec(Vt)>, vec(Et)>]> ∈ RN·F+N2
, and then a linear

autoregressive model is applied:

ût+1 = B0 +
k∑

i=1

Bi · ut−i+1.

7

Baselines

Mean

Assumes GSP is stationary, predicts the mean graph: ĝt+1 = Ef [g].

Martingale
Assumes GSP is a martingale, predicts the previous graph: ĝt+1 = gt .

Moving average
Predicts the mean graph from the k preceding observations:

ĝt+1 = Ef [g k
t] = argmin

g ′

∑
gi∈g k

t

d(g ′, gi)
2.

Vector AR

Graphs are represented as vectors ut = [vec(Vt)>, vec(Et)>]> ∈ RN·F+N2
, and then a linear

autoregressive model is applied:

ût+1 = B0 +
k∑

i=1

Bi · ut−i+1.

7

Results

8

Results

Figure 1: Graph edit distance between predicted
and true graphs.

Figure 2: Loss v. complexity of the problem.

9

Spektral

A library for relational representation learning:

• Keras API, TensorFlow backend;

• Includes state-of-the-art GNN layers [2]–[6];

• danielegrattarola.github.io/spektral.

10

danielegrattarola.github.io/spektral

Conclusions

Key ideas:

1. Formalized AR models for graphs;

2. GNNs as AR functions from Gp to G;

Future works:

• Skip graph embedding, work directly in G;
• Improve definition of H.

Code: https://github.com/dan-zam/NGAR

D. Grattarola - grattd@usi.ch - Twitter: @riceasphait

D. Zambon - zambod@usi.ch

11

https://github.com/dan-zam/NGAR
grattd@usi.ch
@riceasphait
zambod@usi.ch

References i

[1] E. Ott, Chaos in Dynamical Systems. Cambridge University Press, 2002.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[3] F. M. Bianchi, D. Grattarola, C. Alippi, and L. Livi, “Graph neural networks with
convolutional arma filters,” arXiv preprint arXiv:1901.01343, 2019.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations (ICLR), 2016.

[5] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852.

12

References ii

[6] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convolutional
neural networks on graphs,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[7] D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A multiscale pyramid transform for
graph signals,” IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 2119–2134,
2016.

[8] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical graph
representation learning with differentiable pooling,” arXiv preprint arXiv:1806.08804,
2018.

[9] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” arXiv preprint arXiv:1511.05493, 2015.

13

Notes on complexity

14

GNNs in one slide

• Graph network blocks: G → G.
• Graph pooling blocks: GN → GM<N .

• Differentiable: can be integrated in any deep learning model.

• State of the art in graph representation learning.

15

Standard convolution

Convolutional neural networks exploit the spatial locality of pixels.

16

Graph convolution

Generalise convolutional layers to arbitrary neighbours.

17

Graph convolution

Generalise convolutional layers to arbitrary neighbours.

17

Graph convolution

Generalise convolutional layers to arbitrary neighbours.

17

Graph convolution

Generalise convolutional layers to arbitrary neighbours.

17

Graph convolution

Generalise convolutional layers to arbitrary neighbours.

17

Graph convolution

The output for each node is given by [4]:

Zi =
∑
j∈Ni

ÃijXjW + b

Can also be written in matrix form:

Z = Ã · X ·W + b

Note

Ã can be computed from the adjacency matrix in several ways (e.g., normalised Laplacian [4],
row average [6], attention [2], . . .)

[2] P. Veličković et al., “Graph Attention Networks,” 2017.

[4] T. N. Kipf et al., “Semi-supervised classification with graph convolutional networks,” 2016.

[6] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.

18

Graph convolution

We can take edge features into account by replacing W with a neural network that transforms
edge features into convolutional kernels [6]:

Zi =
∑

j∈N (i)

Ãij · Xj ·W + b

becomes

Zi =
∑

j∈N (i)

Ãij · Xj · f (Eji) + b

[6] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.

19

Graph pooling

Aggregate node features to obtain a lower-resolution graph [5], [7], [8].

[5] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.

[7] D. I. Shuman et al., “A multiscale pyramid transform for graph signals,” 2016.

[8] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018.

20

Graph pooling

Global pooling is the final step to reduce a graph to a vector, e.g., Z =
∑
i

αiXi .

αi can be learned with neural network f (X) : RN×F → [0, 1]N to compute the relative
importance of each node [9].

[9] Y. Li et al., “Gated graph sequence neural networks,” 2015. 21

