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Sequences of graphs

A graph of N nodes is a tuple g = (V, E) ∈ G s.t.:

V = {vi ∈ RF}i=1,...,N E = {eij ∈ RS}vi ,vj∈V

A graph stochastic process (GSP) is a sequence of random variables {gt ∈ G}t=0,...,T
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Problem formulation: graph autoregression

Traditional AR model Graph AR model

f : Rp×d → Rd

φ : Gp → G

xt+1 = f (xp
t ) + ε

gt+1 = H(φ(gp
t ), η)

f (xp
t ) = E[f (xp

t ) + ε]

φ(gp
t ) ∈ Ef

η[H(φ(gp
t ), η)]

Var[ε] = σ2 <∞

Varf [η] <∞

Where:

Ef [g ] := argmin
g ′∈G

∫
G
d(g , g ′)2 dQg (g)

Varf [g ] := min
g ′∈G

∫
G
d(g , g ′)2 dQg (g)
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Implementing φ(g p
t )

Graph embedding

φemb( · ; θemb) : G → Rl , applied in parallel to
each graph in the regressor.

Vector prediction

φprd( · ; θprd) : Rk×l → Rl , captures temporal
dynamics in embedding space.

Graph decoder

φdec( · ; θdec) : Rl → G, outputs graph from
predicted vector.
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Implementing φ(g p
t ) with a GNN
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Experiments: rotational model

Points moving in a 2D plane with delayed
rotations:

f (xp
t ) = R(xp

t ) · xt

Rn(xp
t ) =

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

]

ω = cn + α cos

(
p−1∑
i=0

xt−i,2n−1 + xt−i,2n

)
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Experiments: Partially Masked Linear Dynamical System (PMLDS)

Given a c-dimensional oscillating linear system:

xt+1 = Rxt

xt ∈ Rc and R ∈ Rc×c

we only observe the top N · F components.
This results in a dynamical system of order
p ∝ (c − N · F ) [1].

[1] E. Ott, Chaos in Dynamical Systems, 2002. 6



Baselines

Mean

Assumes GSP is stationary, predicts the mean graph: ĝt+1 = Ef [g ].

Martingale
Assumes GSP is a martingale, predicts the previous graph: ĝt+1 = gt .

Moving average
Predicts the mean graph from the k preceding observations:

ĝt+1 = Ef [g k
t ] = argmin

g ′

∑
gi∈g k

t

d(g ′, gi )
2.

Vector AR

Graphs are represented as vectors ut = [vec(Vt)>, vec(Et)>]> ∈ RN·F+N2
, and then a linear

autoregressive model is applied:

ût+1 = B0 +
k∑

i=1

Bi · ut−i+1.
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ût+1 = B0 +
k∑

i=1

Bi · ut−i+1.

7



Results
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Results

Figure 1: Graph edit distance between predicted
and true graphs.

Figure 2: Loss v. complexity of the problem.
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Spektral

A library for relational representation learning:

• Keras API, TensorFlow backend;

• Includes state-of-the-art GNN layers [2]–[6];

• danielegrattarola.github.io/spektral.

10
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Conclusions

Key ideas:

1. Formalized AR models for graphs;

2. GNNs as AR functions from Gp to G;

Future works:

• Skip graph embedding, work directly in G;
• Improve definition of H.

Code: https://github.com/dan-zam/NGAR

D. Grattarola - grattd@usi.ch - Twitter: @riceasphait

D. Zambon - zambod@usi.ch
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Notes on complexity
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GNNs in one slide

• Graph network blocks: G → G.
• Graph pooling blocks: GN → GM<N .

• Differentiable: can be integrated in any deep learning model.

• State of the art in graph representation learning.

15



Standard convolution

Convolutional neural networks exploit the spatial locality of pixels.
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Graph convolution

Generalise convolutional layers to arbitrary neighbours.
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Graph convolution

The output for each node is given by [4]:

Zi =
∑
j∈Ni

ÃijXjW + b

Can also be written in matrix form:

Z = Ã · X ·W + b

Note

Ã can be computed from the adjacency matrix in several ways (e.g., normalised Laplacian [4],
row average [6], attention [2], . . . )

[2] P. Veličković et al., “Graph Attention Networks,” 2017.

[4] T. N. Kipf et al., “Semi-supervised classification with graph convolutional networks,” 2016.

[6] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.
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Graph convolution

We can take edge features into account by replacing W with a neural network that transforms
edge features into convolutional kernels [6]:

Zi =
∑

j∈N (i)

Ãij · Xj ·W + b

becomes

Zi =
∑

j∈N (i)

Ãij · Xj · f (Eji ) + b

[6] M. Simonovsky et al., “Dynamic edge-conditioned filters in convolutional neural networks on graphs,” 2017.
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Graph pooling

Aggregate node features to obtain a lower-resolution graph [5], [7], [8].

[5] M. Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” 2016.

[7] D. I. Shuman et al., “A multiscale pyramid transform for graph signals,” 2016.

[8] R. Ying et al., “Hierarchical Graph Representation Learning with Differentiable Pooling,” 2018.
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Graph pooling

Global pooling is the final step to reduce a graph to a vector, e.g., Z =
∑
i

αiXi .

αi can be learned with neural network f (X ) : RN×F → [0, 1]N to compute the relative
importance of each node [9].

[9] Y. Li et al., “Gated graph sequence neural networks,” 2015. 21


