
LearningGraphCellularAutomata
D. Grattarola1,4 · L. Livi2 · C. Alippi1,3

1 Università della Svizzera italiana; 2 University of Manitoba; 3 Politecnico di Milano; 4 grattd@usi.ch

1. Cellular Automata
Cellular automata (CA) are lattices of stateful cells
with a transition rule that updates the state of each
cell as a function of its neighbourhood configura-
tion. By applying this local rule synchronously
over time, we see interesting dynamics emerge.

Fig. 1: A 2-dimensional CA, the Game of Life

2. Graph Cellular Automata

Graph CA (GCA) are a generalisation of typical CA
that only preserve the idea of locality:

• Arbitrary neighbourhoods (cells in a graph);
• State space is a generic vector space;
• Transition rule τ is a function of neighbours N (i):

τ(si) : {si} ∪ {sj , eji | j ∈ N (i)} 7→ s′i,

Fig. 2: Transition of a GCA

3. Graph Neural Cellular Automata

Key idea: use graph neural networks (GNNs) as
learnable transition rules

s′i = γ
(
si,

∑
j∈N (i)

ϕ (si, sj , eji)
)
.

Enables the design of rules by specifying desired be-
haviour.

Previous work: exclusively focused on regular grids,
using convolutional neural networks [1–6]

si

Pre-process Message passing

s′i

New state

MLP MLP

Fig. 3: Achitecture of the GNCA.

Universality results: we extend the previous results of Gilpin [4] to implement any M -state GCA rule:
• MLP for one-hot encoding states;
• Message-passing for pattern matching (use edge attributes as lookup keys).

References
[1] N Wulff and J A Hertz. Learning cellular automaton dynamics with neural networks. Neural Information Processing

Systems, 1992.
[2] Wilfried Elmenreich and István Fehérvári. Evolving self-organizing cellular automata based on neural network genotypes.

In International Workshop on Self-Organizing Systems, 2011.
[3] Stefano Nichele et al. Ca-neat: evolved compositional pattern producing networks for cellular automata morphogenesis

and replication. IEEE Transactions on Cognitive and Developmental Systems, 2017.
[4] William Gilpin. Cellular automata as convolutional neural networks. Physical Review E, 2019.
[5] Alexander Mordvintsev et al. Growing neural cellular automata. Distill, 2020.
[6] Ettore Randazzo et al. Self-classifying mnist digits. Distill, 2020.
[7] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. Annual Conference on Computer graphics

and interactive techniques, 1987.

Code: github.com/danielegrattarola/GNCA · ArXiv: arxiv.org/abs/2110.14237
Blog: danielegrattarola.github.io/posts/2021-11-08/graph-neural-cellular-automata

4. Voronoi GCA
Voronoi GCA: binary states, random Delaunay graph.

Fig. 4: Voronoi GCA

Outer-totalistic rule depends on the density
ρi of alive neighbours:

τ(si) =

{
si, if ρi ≤ κ

1− si, if ρi > κ. 100 101 102 103

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train
Valid

Fig. 5: Accuracy

5. Boids GCA
Boids GCA [7]: continuous multidimensional states, dynamic graph.
Results: the GNCA learns to imitate the flocking behaviour.

Fig. 6: Separation, alignment, cohesion Fig. 7: GNCA flocks and complexity

6. Morphogenesis

GCA: point clouds, states are coordinates.
Task: converge to a desired target state.
Results: the GNCA learns stable rules most times.
Sometimes, it oscillates around target.

S GNCA

t ∈ [10, 20]

Ŝ

BPTT

Cache
SaveLoad

Fig. 8: Training GNCA with BPTT and a states cache. Fig. 9: Convergent GNCA

Fig. 10: Oscillating GNCA


